973 resultados para Crystal Structure
Resumo:
Viral fusion proteins mediate the merger of host and viral membranes during cell entry for all enveloped viruses. Baculovirus glycoprotein gp64 (gp64) is unusual in promoting entry into both insect and mammalian cells and is distinct from established class I and class II fusion proteins. We report the crystal structure of its postfusion form, which explains a number of gp64's biological properties including its cellular promiscuity, identifies the fusion peptides and shows it to be the third representative of a new class (III) of fusion proteins with unexpected structural homology with vesicular stomatitis virus G and herpes simplex virus type 1 gB proteins. We show that domains of class III proteins have counterparts in both class I and II proteins, suggesting that all these viral fusion machines are structurally more related than previously thought.
Resumo:
Snake venoms contain a number of proteins that interact with components of the haemostatic system that promote or inhibit events leading to blood- clot formation. The snake- venom protein convulxin ( Cvx) binds glycoprotein ( GP) VI, the platelet receptor for collagen, and triggers signal transduction. Here, the 2.7 Angstrom resolution crystal structure of Cvx is presented. In common with other members of this snake-venom protein family, Cvx is an alphabeta- heterodimer and conforms to the C- type lectin- fold topology. Comparison with other family members allows a set of Cvx residues that form a concave surface to be putatively implicated in GPVI binding. Unlike other family members, with the exception of flavocetin- A ( FL- A), Cvx forms an (alphabeta)(4) tetramer. This oligomeric structure is consistent with Cvx clustering GPVI molecules on the surface of platelets and as a result promoting signal transduction activity. The Cvx structure and the location of the putative binding sites suggest a model for this multimeric signalling assembly.
Resumo:
Serine acetyltransferase (SAT) catalyzes the first step of cysteine synthesis in microorganisms and higher plants. Here we present the 2.2 Angstrom crystal structure of SAT from Escherichia coli, which is a dimer of trimers, in complex with cysteine. The SAT monomer consists of an amino-terminal alpha-helical domain and a carboxyl- terminal left-handed beta-helix. We identify His(158) and Asp(143) as essential residues that form a catalytic triad with the substrate for acetyl transfer. This structure shows the mechanism by which cysteine inhibits SAT activity and thus controls its own synthesis. Cysteine is found to bind at the serine substrate site and not the acetyl-CoA site that had been reported previously. On the basis of the geometry around the cysteine binding site, we are able to suggest a mechanism for the O-acetylation of serine by SAT. We also compare the structure of SAT with other left-handed beta-helical structures.
Resumo:
Echovirus type 12 (EV12), an enterovirus of the Picornaviridae family, uses the complement regulator, decay-accelerating factor (DAF, CD55) as a cellular receptor. We have calculated a three-dimensional reconstruction of EV12 bound to a fragment of DAF, consisting of short consensus repeat domains 3 and 4, from cryo-negative stain electron microscopy data (EMD #1057). This shows that, as for an earlier reconstruction of the related echovirus type 7 bound to DAF, attachment is not within the viral canyon but occurs close to the two-fold symmetry axes. Despite this general similarity, our reconstruction reveals a receptor interaction that is quite different from that observed for EV7. Fitting of the crystallographic co-ordinates for DAF34 and EV11 into the reconstruction shows a close agreement between the crystal structure of the receptor fragment and the density for the virus-bound receptor, allowing unambiguous positioning of the receptor with respect to the virion (PDB #1UPN). Our finding that the mode of virus-receptor interaction in EV12 is distinct from that seen for EV7 raises interesting questions regarding the evolution and biological significance of the DAF-binding phenotype in these viruses.
Resumo:
Reaction of a group of N-(2'-hydroxyphenyl)benzaldimines, derived from 2-aminophenol and five para-substituted benzaldehydes (the para substituents are OCH3, CH3, H, Cl and NO2), with [Rh(PPh3)(3)Cl] in refluxing toluene in the presence of a base (NEW afforded a family of organometallic complexes of rhodium(III). The crystal structure of one complex has been determined by X-ray crystallography. In these complexes the benzaldimine ligands are coordinated to the metal center, via dissociation of the phenolic proton and the phenyl proton at the ortho position of the phenyl ring in the imine fragment, as dianionic tridentate C,N,O-donors, and the two PPh3 ligands are trans. The complexes are diamagnetic (low-spin d(6), S = 0) and show intense MLCT transitions in the visible region. Cyclic voltammetry shows a Rh(III)-Rh(IV) oxidation within 0.63-0.93 V vs SCE followed by an oxidation of the coordinated benzaldimine ligand. A reduction of the coordinated benzaldimine is also observed within -0.96 to -1.04 V vs SCE. Potential of the Rh(Ill)-Rh(IV) oxidation is found to be sensitive to the nature of the para-substituent. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Three new supramolecular assemblies of co-crystallized metal complexes and aliphatic dicarboxylic acids, {[Cu(pic)(2)(H2O)(2)](H(2)mal)}(n) (1), {[Cu(pic)(2)(H2O)(2)](H(2)mal)(2)(H2O)(2)}(n) (2) and {[Cu(pic)(2)(MeOH)](H(2)succ)}(n) (3) {Hpic = 2-picolinic acid, H(2)mal = malonic acid and H(2)succ = succinic acid} have been synthesized and characterized by X-ray single-crystal structure determination. The crystal packings of the complexes reveal that supramolecular associations of the monomeric complex units lead to the formation of layers through hydrogen bonding. In all the complexes, the dicarboxylic acid units connect the 2-D layers to act as pillars. The interaction between water molecules and the dicarboxylic acid plays an important role in the overall supramolecular assembly. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Polycondensation of 2,6-dihydroxynaphthalene with 4,4'-bis(4"-fluorobenzoyl)biphenyl affords a novel, semicrystalline poly(ether ketone) with a melting point of 406 degreesC and glass transition temperature (onset) of 168 degreesC. Molecular modeling and diffraction-simulation studies of this polymer, coupled with data from the single-crystal structure of an oligomer model, have enabled the crystal and molecular structure of the polymer to be determined from X-ray powder data. This structure-the first for any naphthalene-containing poly(ether ketone)-is fully ordered, in monoclinic space group P2(1)/b, with two chains per unit cell. Rietveld refinement against the experimental powder data gave a final agreement factor (R-wp) of 6.7%.
Resumo:
Hexadecanuclear copper mixed-valence complex 2 containing 10 Cu-II, centers and 6 Cu-I centers was isolated with N,O donor ligands. From the X-ray crystal structure, 2 was found to contain a centrosymmetric dimeric cation - each monomeric unit composed of eight copper centers. It displays a very broad and weak intervalence charge-transfer band around 1100 nm at room temperature in the solid state. Variable-temperature magnetic susceptibility measurements indicate an S = 1/2 ground state for half of 2, explicitly, each Cu-8 moiety has a g value around 2.26. Complex 2 was examined by NMR spectroscopy at room temperature in solution and by EPR at low temperature; the data indicates that the valence is delocalized in 2 at room temperature but localized at low temperature. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)
Resumo:
A novel bis(glycinato) copper(II) paradodecatungstate Na-8[{Cu(gly)(2)}(2)]-{H-2(H2W12O42)}] center dot 24H(2)O (1) has been synthesized under hydrothermal conditions. The crystal structure of 1 reveals an infinite one-dimensional chain along the [100] direction and is built from paradodecatungstate (H2W12O42)(10-) clusters joined through [Cu(gly)(2)] moieties. Parallel chains are interlinked by NaO6 octahedra to generate a two-dimensional network.
Resumo:
Two new metal-organic based polymeric complexes, [Cu-4(O2CCH2CO2)(4)(L)].7H(2)O (1) and [CO2(O2CCH2CO2)(2)(L)].2H(2)O (2) [L = hexamethylenetetramine (urotropine)], have been synthesized and characterized by X-ray crystal structure determination and magnetic studies. Complex 1 is a 1D coordination polymer comprising a carboxylato, bridged Cu-4 moiety linked by a tetradentate bridging urotropine. Complex 2 is a 3D coordination polymer made of pseudo-two-dimensional layers of Co(II) ions linked by malonate anions in syn-anticonformation which are bridged by bidentate urotropine in trans fashion, Complex 1 crystallizes in the orthothombic system, space group Pmmn, with a = 14,80(2) Angstrom, b = 14.54(2) Angstrom, c = 7.325(10) Angstrom, beta = 90degrees, and Z = 4. Complex 2 crystallizes in the orthorhombic system, space group Imm2, a = 7.584(11) Angstrom, b = 15.80(2) Angstrom, c = 6.939(13) Angstrom, beta = 90.10degrees(1), and Z = 4. Variable temperature (300-2 K) magnetic behavior reveals the existence of ferro- and antiferromagnetic interactions in 1 and only antiferromagnetic interactions in 2. The best fitted parameters for complex 1 are J = 13.5 cm(-1), J = -18.1 cm(-1), and g = 2.14 considering only intra-Cu-4 interactions through carboxylate and urotropine pathways. In case of complex 2, the fit of the magnetic data considering intralayer interaction through carboxylate pathway as well as interlayer interaction via urotropine pathway gave no satisfactory result at this moment using any model known due to considerable orbital contribution of Co(II) ions to the magnetic moment and its complicated structure. Assuming isolated Co(II) ions (without any coupling, J = 0) the shape of the chi(M)T curve fits well with experimental data except at very low temperatures.
Resumo:
Two polymeric azido bridged complexes [Ni2L2(N-3)(3)](n)(ClO4). (1) and [Cu(bpdS)(2)(N-3)],(ClO4),(H2O)(2.5n) (2) [L = Schiff base, obtained from the condensation of pyridine-2-aldehyde with N,N,2,2-tetramethyl-1,3-propanediamine; bpds = 4,4'-bipyridyl disulfide] have been synthesized and their crystal structures have been determined. Complex 1, C26H42ClN15Ni2O4, crystallizes in a triclinic system, space group P1 with a 8.089(13), b = 9.392(14), c = 12.267(18) angstrom, a = 107.28(l), b 95.95(1), gamma = 96.92(1)degrees and Z = 2; complex 2, C20H21ClCuN7O6.5S4, crystallizes in an orthorhombic system, space group Pnna with a = 10.839(14), b = 13.208(17), c = 19.75(2) angstrom and Z = 4. The crystal structure of I consists of 1D polymers of nickel(L) units, alternatively connected by single and double bridging mu-(1,3-N-3) ligand with isolated perchlorate anions. Variable temperature magnetic susceptibility data of the complex have been measured and the fitting,of magnetic data was carried out applying the Borris-Almenar formula for such types of alternating one-dimensional S = 1 systems, based on the Hamiltonian H = -J Sigma(S2iS2i-1 + aS(2i)S(2i+1)). The best-fit parameters obtained are J = -106.7 +/- 2 cm(-1); a = 0.82 +/- 0.02; g = 2.21 +/- 0.02. Complex 2 is a 2D network of 4,4 topology with the nodes occupied by the Cu-II ions, and the edges formed by single azide and double bpds connectors. The perchlorate anions are located between pairs of bpds. The magnetic data have been fitted considering the complex as a pseudo-one-dimensional system, with all copper((II)) atoms linked by [mu(1,3-azido) bridging ligands at axial positions (long Cu...N-3 distances) since the coupling through long bpds is almost nil. The best-fit parameters obtained with this model are J = -1.21 +/- 0.2 cm(-1), g 2.14 +/- 0.02. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).
Resumo:
Crystal structure determination of adducts of sparteine and PhLi, (-)-sparteine and PhOLi and of sparteine and PhLi/PhOLi reveal a four-membered ring with two lithium centers, each capped by a (-)-sparteine ligand, as central motif of all structure. Quantum-chemical calculations show that the mixed aggregate [PhLi center dot PhOLi center dot 2(-)-sparteine] is energetically more favorable than the model system {1/2[PhLi center dot(-)-sparteine](2) + 1/2[PhOLi center dot(-)-sparteine](2)}.
Resumo:
We describe a crystal structure, at atomic resolution (1.1 Å, 100 K), of a ruthenium polypyridyl complex bound to duplex DNA, in which one ligand acts as a wedge in the minor groove, resulting in the 51° kinking of the double helix. The complex cation Λ-[Ru(1,4,5,8-tetraazaphenanthrene)2(dipyridophenazine)]2+ crystallizes in a 1∶1 ratio with the oligonucleotide d(TCGGCGCCGA) in the presence of barium ions. Each complex binds to one duplex by intercalation of the dipyridophenazine ligand and also by semiintercalation of one of the orthogonal tetraazaphenanthrene ligands into a second symmetrically equivalent duplex. The result is noncovalent cross-linking and marked kinking of DNA.
Resumo:
DNA-strand exchange is a vital step in the recombination process, of which a key intermediate is the four-way DNA Holliday junction formed transiently in most living organisms. Here, the single-crystal structure at a resolution of 2.35 Å of such a DNA junction formed by d(CCGGTACCGG)2, which has crystallized in a more highly symmetrical packing mode to that previously observed for the same sequence, is presented. In this case, the structure is isomorphous to the mismatch sequence d(CCGGGACCGG)2, which reveals the roles of both lattice and DNA sequence in determining the junction geometry. The helices cross at the larger angle of 43.0° (the previously observed angle for this sequence was 41.4°) as a right-handed X. No metal cations were observed; the crystals were grown in the presence of only group I counter-cations.
Resumo:
The addition of the atropisomeric racemic sulfur compound 4,4′-biphenanthrene-3,3′-dithiol (H2 biphes) to a dichloromethane solution of [{M(μ-OMe)(cod)}2] (M = Rh, Ir, cod = cycloocta-1,5-diene) afforded the dithiolate-bridged complexes [{Rh2(μ-biphes)(cod)2}n] (n = 2 5 or n = 1 6) and [{Ir2(μ-biphes)(cod)2}n]·nCH2Cl27. When 1,1′-binaphthalene-2,2′-dithiol (H2 binas) reacted with [{Ir(μ-OMe)(cod)}2], complex [Ir2(μ-binas)(cod)2] 8 was obtained. Complexes 5 and 6 reacted with carbon monoxide to give the dinuclear tetracarbonyl complex [Rh2(μ-biphes)(CO)4] 9. The reaction of 9 with PR3 provided the mixed-ligand complexes [{Rh2(μ-biphes)(CO)2(PR3)2}2] · xCH2Cl2 (R = Ph, x = 2 10, C6H11, x = 1 11) and [{Rh2(μ-biphes)(CO)3(PR3)}2] · CH2Cl212 (R = OC6H4But-o). The crystal structure of 6 was determined by X-ray diffraction. Reaction of the dithioether ligand Me2biphes with [Rh(cod)2]ClO4 in CH2Cl2 solution afforded the cationic complex [Rh(cod)(Me2biphes)]ClO4 · CH2Cl213. Asymmetric hydroformylation of styrene was performed using the complexes described. The extent of aldehyde conversion ranges from 53 to 100%, with selectivities towards branched aldehydes in the range 51 to 96%. The enantioselectivities were quite low and did not exceed 20%.