990 resultados para Cross sections (Nuclear physics).
Resumo:
A search for an excess of events with multiple high transverse momentum objects including charged leptons and jets is presented, using 20.3 fb−1 of proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2012 at a centre-of-mass energy of √s = 8TeV. No excess of events beyond Standard Model expectations is observed. Using extra-dimensional models for black hole and string ball production and decay, exclusion contours are determined as a function of the mass threshold for production and the fundamental gravity scale for two, four and six extra dimensions. For six extra dimensions, mass thresholds of 4.8–6.2TeV are excluded at 95% confidence level, depending on the fundamental gravity scale and model assumptions. Upper limits on the fiducial cross-sections for non-Standard Model production of these final states are set.
Resumo:
The prompt and non-prompt production cross-sections for the χc1 and χc2 charmonium states are measured in pp collisions at √s = 7TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χc states are reconstructed through the radiative decay χc → J/ψγ (with J/ψ → μ+μ−) where photons are reconstructed from γ → e+e− conversions. The production rate of the χc2 state relative to the χc1 state is measured for prompt and non-prompt χc as a function of J/ψ transverse momentum. The prompt χc cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χc decays. The fractions of χc1 and χc2 produced in b-hadron decays are also measured.
Resumo:
Measurements of four-lepton (4ℓ , ℓ=e,μ ) production cross sections at the Z resonance in pp collisions at the LHC with the ATLAS detector are presented. For dilepton and four-lepton invariant mass regions m ℓ + ℓ − >5 GeV and 80
Resumo:
The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at ps = 7TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio ơ(W++c)/ơ(W−+c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s–s quark asymmetry.
Resumo:
Measurements of fiducial cross sections for the electroweak production of two jets in association with a Z-boson are presented. The measurements are performed using 20.3 fb−1 of proton-proton collision data collected at a centre-of-mass energy of p s = 8TeV by the ATLAS experiment at the Large Hadron Collider. The electroweak component is extracted by a fit to the dijet invariant mass distribution in a fiducial region chosen to enhance the electroweak contribution over the dominant background in which the jets are produced via the strong interaction. The electroweak cross sections measured in two fiducial regions are in good agreement with the Standard Model expectations and the background-only hypothesis is rejected with significance above the 5ơ level. The electroweak process includes the vector boson fusion production of a Z-boson and the data are used to place limits on anomalous triple gauge boson couplings. In addition, measurements of cross sections and differential distributions for inclusive Z-boson-plus-dijet production are performed in five fiducial regions, each with different sensitivity to the electroweak contribution. The results are corrected for detector effects and compared to predictions from the Sherpa and Powheg event generators.
Resumo:
Using a sample of dilepton top-quark pair (tt ¯ ) candidate events, a study is performed of the production of top-quark pairs together with heavy-flavor (HF) quarks, the sum of tt ¯ +b+X and tt ¯ +c+X , collectively referred to as tt ¯ + HF . The data set used corresponds to an integrated luminosity of 4.7 fb −1 of proton-proton collisions at a center-of-mass energy of 7 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The presence of additional HF (b or c ) quarks in the tt ¯ sample is inferred by looking for events with at least three b -tagged jets, where two are attributed to the b quarks from the tt ¯ decays and the third to additional HF production. The dominant background to tt ¯ + HF in this sample is tt ¯ +jet events in which a light-flavor jet is misidentified as a heavy-flavor jet. To determine the heavy- and light-flavor content of the additional b -tagged jets, a fit to the vertex mass distribution of b -tagged jets in the sample is performed. The result of the fit shows that 79 ± 14 (stat) ± 22 (syst) of the 105 selected extra b -tagged jets originate from HF quarks, 3 standard deviations away from the hypothesis of zero tt ¯ + HF production. The result for extra HF production is quoted as a ratio (R HF ) of the cross section for tt ¯ + HF production to the cross section for tt ¯ production with at least one additional jet. Both cross sections are measured in a fiducial kinematic region within the ATLAS acceptance. R HF is measured to be [6.2±1.1(stat)±1.8(syst)]% for jets with p T >25 GeV and |η|<2.5 , in agreement with the expectations from Monte Carlo generators.
Resumo:
XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2 10-47 c 2 for WIMP masses around 50 GeV2, which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of ~ 10 m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (>99.5%) and showers of secondary particles from muon interactions in the rock (>70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.
Resumo:
We determine the mass of the bottom quark from high moments of the bbproduction cross section in e+e−annihilation, which are dominated by the threshold region. On the theory side next-to-next-to-next-to-leading order (NNNLO) calculations both for the resonances and the continuum cross section are used for the first time. We find mPSb(2GeV) =4.532+0.013−0.039GeVfor the potential-subtracted mass and mMSb(mMSb) =4.193+0.022−0.035GeVfor the MSbottom-quark mass.
Resumo:
The completion of the third-order QCD corrections to the inclusive top-pair production cross section near threshold demonstrates that the strong dynamics is under control at the few percent level. In this paper we consider the effects of the Higgs boson on the cross section and, for the first time, combine the third-order QCD result with the third-order P-wave, the leading QED and the leading non-resonant contributions. We study the size of the different effects and investigate the sensitivity of the cross section to variations of the top-quark Yukawa coupling due to possible new physics effects.
Resumo:
In the framework of the MSSM, we examine several simplified models where only a few superpartners are light. This allows us to study WIMP-nucleus scattering in terms of a handful of MSSM parameters and thereby scrutinize their impact on dark matter direct-detection experiments. Focusing on spin-independent WIMP-nucleon scattering, we derive simplified, analytic expressions for the Wilson coefficients associated with Higgs and squark exchange. We utilize these results to study the complementarity of constraints due to direct-detection, flavor, and collider experiments. We also identify parameter configurations that produce (almost) vanishing cross sections. In the proximity of these so-called blind spots, we find that the amount of isospin violation may be much larger than typically expected in the MSSM. This feature is a generic property of parameter regions where cross sections are suppressed, and highlights the importance of a careful analysis of the nucleon matrix elements and the associated hadronic uncertainties. This becomes especially relevant once the increased sensitivity of future direct-detection experiments corners the MSSM into these regions of parameter space.
Resumo:
The amino-keto tautomer of supersonic jet-cooled cytosine undergoes intersystem crossing (ISC) from the v = 0 and low-lying vibronic levels of its S1(¹ππ*) state. We investigate these ISC rates experimentally and theoretically as a function of S1 state vibrational excess energy Eexc. The S1 vibronic levels are pumped with a ~5 ns UV laser, the S1 and triplet state ion signals are separated by prompt or delayed ionization with a second UV laser pulse. After correcting the raw ISC yields for the relative S1 and T1ionization cross sections, we obtain energy dependent ISC quantum yields Q corr ISC =1% –5%. These are combined with previously measured vibronic state-specific decay rates, giving ISC rates kISC = 0.4–1.5 ⋅ 10⁹ s⁻¹, the corresponding S1⇝S0internal conversion (IC) rates are 30–100 times larger. Theoretical ISC rates are computed using SCS-CC2 methods, which predict rapid ISC from the S1; v = 0 state with kISC = 3 ⋅ 10⁹ s⁻¹ to the T1(³ππ*) triplet state. The surprisingly high rate of this El Sayed-forbidden transition is caused by a substantial admixture of ¹nOπ* character into the S1(¹ππ*) wave function at its non-planar minimum geometry. The combination of experiment and theory implies that (1) below Eexc = 550 cm⁻¹ in the S1 state, S1⇝S0internal conversion dominates the nonradiative decay with kIC ≥ 2 ⋅ 10¹⁰ s⁻¹, (2) the calculated S1⇝T1 (¹ππ*⇝³ππ*) ISC rate is in good agreement with experiment, (3) being El-Sayed forbidden, the S1⇝T1 ISC is moderately fast (kISC = 3 ⋅ 10⁹ s⁻¹), and not ultrafast, as claimed by other calculations, and (4) at Eexc ~ 550 cm⁻¹ the IC rate increases by ~50 times, probably by accessing the lowest conical intersection (the C5-twist CI) and thereby effectively switching off the ISC decay channels.
Resumo:
We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t x y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as 2.5×10−49 cm2 can be probed for WIMP masses around 40 GeV/c2. Additional improvements in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei.
Resumo:
As Rosetta was orbiting comet 67P/Churyumov-Gerasimenko, the Ion and Electron Sensor detected negative particles with angular distributions like those of the concurrently measured solar wind protons but with fluxes of only about 10% of the proton fluxes and energies of about 90% of the proton energies. Using well-known cross sections and energy-loss data, it is determined that the fluxes and energies of the negative particles are consistent with the production of H- ions in the solar wind by double charge exchange with molecules in the coma.
Resumo:
Context. During September and October 2014, the OSIRIS cameras onboard the ESA Rosetta mission detected millions of single particles. Many of these dust particles appear as long tracks (due to both the dust proper motion and the spacecraft motion during the exposure time) with a clear brightness periodicity. Aims. We interpret the observed periodic features as a rotational and translational motion of aspherical dust grains. Methods. By counting the peaks of each track, we obtained statistics of a rotation frequency. We compared these results with the rotational frequency predicted by a model of aspherical dust grain dynamics in a model gas flow. By testing many possible sets of physical conditions and grain characteristics, we constrained the rotational properties of dust grains. Results. We analyzed on the motion of rotating aspherical dust grains with different cross sections in flow conditions corresponding to the coma of 67P/Churyumov-Gerasimenko qualitatively and quantitatively. Based on the OSIRIS observations, we constrain the possible physical parameters of the grains.
Resumo:
Clinical oncologists and cancer researchers benefit from information on the vascularization or non-vascularization of solid tumors because of blood flow's influence on three popular treatment types: hyperthermia therapy, radiotherapy, and chemotherapy. The objective of this research is the development of a clinically useful tumor blood flow measurement technique. The designed technique is sensitive, has good spatial resolution, in non-invasive and presents no risk to the patient beyond his usual treatment (measurements will be subsequent only to normal patient treatment).^ Tumor blood flow was determined by measuring the washout of positron emitting isotopes created through neutron therapy treatment. In order to do this, several technical and scientific questions were addressed first. These questions were: (1) What isotopes are created in tumor tissue when it is irradiated in a neutron therapy beam and how much of each isotope is expected? (2) What are the chemical states of the isotopes that are potentially useful for blood flow measurements and will those chemical states allow these or other isotopes to be washed out of the tumor? (3) How should isotope washout by blood flow be modeled in order to most effectively use the data? These questions have been answered through both theoretical calculation and measurement.^ The first question was answered through the measurement of macroscopic cross sections for the predominant nuclear reactions in the body. These results correlate well with an independent mathematical prediction of tissue activation and measurements of mouse spleen neutron activation. The second question was addressed by performing cell suspension and protein precipitation techniques on neutron activated mouse spleens. The third and final question was answered by using first physical principles to develop a model mimicking the blood flow system and measurement technique.^ In a final set of experiments, the above were applied to flow models and animals. The ultimate aim of this project is to apply its methodology to neutron therapy patients. ^