994 resultados para Course identity
Resumo:
Here we introduce a computer database that allows for the rapid retrieval of physicochemical properties, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes information about a protein or a list of proteins. We applied PIGOK analyzing Schizosaccharomyces pombe proteins displaying differential expression under oxidative stress and identified their biological functions and pathways. The database is available on the Internet at http://pc4-133.ludwig.ucl.ac.uk/pigok.html.
Resumo:
Selecting a stimulus as the target for a goal-directed movement involves inhibiting other competing possible responses. Both target and distractor stimuli activate populations of neurons in topographic oculomotor maps such as the superior colliculus. Local inhibitory interconnections between these populations ensure only one saccade target is selected. Suppressing saccades to distractors may additionally involve inhibiting corresponding map regions to bias the local competition. Behavioral evidence of these inhibitory processes comes from the effects of distractors on oculomotor and manual trajectories. Individual saccades may initially deviate either toward or away from a distractor, but the source of this variability has not been investigated. Here we investigate the relation between distractor-related deviation of trajectory and saccade latency. Targets were presented with, or without, distractors, and the deviation of saccade trajectories arising from the presence of distractors was measured. A fixation gap paradigm was used to manipulate latency independently of the influence of competing distractors. Shorter- latency saccades deviated toward distractors and longer-latency saccades deviated away from distractors. The transition between deviation toward or away from distractors occurred at a saccade latency of around 200 ms. This shows that the time course of the inhibitory process involved in distractor related suppression is relatively slow.
Resumo:
Is the human body a suitable place for a microchip? Such discussion is no longer hypothetical - in fact in reality it has not been so for some years. Restorative devices such as pacemakers and cochlear implants have become well established, yet these sophisticated devices form notably intimate links between technology and the body. More recent developments in engineering technologies have meant that the integration of silicon with biology is now reaching new levels - with devices which interact directly with the brain. As medical technologies continue to advance, their potential benefits for human enhancement will become increasingly attractive, and so we need to seriously consider where this may take us. In this paper, an attempt is made to demonstrate that, in the medical context, the foundations of more advanced implantable enhancement technologies are already notably progressed, and that they are becoming more science fact than is widely considered. A number of wider moral, ethical and legal issues stem from enhancement applications and it is difficult to foresee the social consequences, the fundamental changes on our very conception of self and the impact on our identity of adoption long term. As a result, it is necessary to acknowledge the possibilities and is timely to have debate to address the wider implications these possibilities may bring.
Resumo:
This paper discusses the RFID implants for identification via a sensor network. Brain-computer implants linked in to a wireless network. Biometric identification via body sensors is also discussed. The use of a network as a means for remote and distance monitoring of humans opens up a range of potential uses. Where implanted identification is concerned this immediately offers high security access to specific areas by means of only an RFID device. If a neural implant is employed then clearly the information exchanged with a network can take on a much richer form, allowing for identification and response to an individual's needs based on the signals apparent on their nervous system.
Resumo:
This case study uses log-linear modelling to investigate the interrelationships between factors that may contribute to the late submission of coursework by undergraduate students. A class of 86 computing students are considered. These students were exposed to traditional teaching methods supported by e-learning via a Managed Learning Environment (MLE). The MLE warehouses detailed data about student usage of the various areas of the environment, which can be used to interpret the approach taken to learning. The study investigates the interrelationship between these factors with the information as to whether the student handed in their course work on time or whether they were late. The results from the log-linear modelling technique show that there is an interaction between participating in Discussions within the MLE and the timely submission of course work, indicating that participants are more likely to hand in on time, than those students who do not participate.