1000 resultados para Counting >150 µm fraction
Resumo:
Two foraminiferal assemblages are observed in surface sediments of the Elbe estuarv. an Elphidium excavatum assemblaae and an Ahmonia/Protelphidium assemblage. They are the result of test-size sorting in accordance to the grain size of the sediments. These assemblages of mainly empty tests differ basically from the living population, which is dominated exclusively by E. excavatum. The average test size is decreasing when advancing from the Open sea into the estuary and the living fauna disappears near the entrance of the Kiel Canal. In the dead assemblage the diversity is distinctively higher and the average test size varies with the grain size of the sediment. The assemblages found in plankton tows are nearly identical with those in corresponding bottom samples. This indicates the distribution pattern to be caused by transport in currents (mainly in suspension). This type of foraminiferal assemblages characterize macro- and mesotidal estuaries and might indicate a high tidal range when observed in sediments of fossil estuaries.
Resumo:
Indicators of surface-water productivity and bottom-water oxygenation have been studied for the age interval from the latest Pleistocene to the Holocene at three holes (679D, 680B, and 68IB) located in the center and at the edges of an upwelling cell at approximately 11°S on the Peruvian continental margin. Upwelling activity was maximal at this latitude during d18O Stages 1 (lower part), 3, the upper part of 5, the lower part of 6, and 7, as documented by high diatom abundance. During these time intervals, the bottom water was poorly oxygenated, as documented by low diversity benthic foraminiferal assemblages that are dominated by B. seminuda s.l. Both surface- and bottom-water-circulation patterns appear to have changed rapidly over short time intervals. Due to changes in surface circulation, the intensity of upwelling decreased, thereby decreasing the concentration of nutrients, and reducing the supply of organic matter to the bottom. Radiolarians became more abundant in the surface waters, and the bottom-water environment was less depleted in oxygen, allowing for the establishment of more diverse benthic foraminiferal assemblages. Surface-water productivity was probably minimal during the early part of d18O Stages 5 and 9, as indicated by the increased abundance of planktonic foraminifers and pteropods and their subsequent preservation.
Resumo:
During Ocean Drilling Program (ODP) Leg 199, sediments were recovered from eight sites in the Central Pacific. Late Oligocene and early Miocene radiolarians are common to abundant and moderately well preserved in Cores 199-1218A-8H through 11H and 199-1219A-5H through 9H. More than 110 radiolarian species were encountered during this study. Of these species, 100 are identifiable forms and the rest are undescribed or unfamiliar forms. This report presents the relative abundances of described forms from the upper Oligocene to lower Miocene sediments.
Resumo:
Records of benthic foraminifera from North Atlantic DSDP Site 607 and Hole 610A indicate changes in deep water conditions through the middle to late Pliocene (3.15 to 2.85 Ma). Quantitative analyses of modem associations in the North Atlantic indicate that seven species, Fontbotia wuellerstorfi, Cibicidoides kullenbergi, Uvigerina peregrina, Nuttallides umboniferus, Melonis pompilioides, Globocassidulina subglobosa and Epistominella exigua are useful for paleoenvironmental interpretation. The western North Atlantic basin (Site 607) was occupied by North Atlantic Deep Water (NADW) until c. 2.88 Ma. At that time, N. umboniferus increased, indicating an influx of Southern Ocean Water (SOW). The eastern North Atlantic basin (Hole 610A) was occupied by a relatively warm water mass, possibly Northeastern Atlantic Deep Water (NEADW), through c. 2.94 Ma when SOW more strongly influenced the site. These interpretations are consistent with benthic delta18O and delta13C records from 607 and 610A (Raymo et al., 1992). The results presented in this paper suggest that the North Atlantic was strongly influenced by northern component deep water circulation until 2.90-2.95 Ma. After that there was a transition toward a glacially driven North Atlantic circulation more strongly influenced by SOW associated with the onset of Northern Hemisphere glaciation. The circulation change follows the last significant SST and atmospheric warming prior to c. 2.6 Ma.
Resumo:
Cretaceous benthic foraminifers from Site 585 in the East Mariana Basin, western Pacific Ocean, provide an environmental and tectonic history of the Basin and the surrounding seamounts. Age diagnostic species (from a fauna of 155 benthic species identified) range from late Aptian to Maestrichtian in age. Displaced species in sediments derived from the tops and flanks of nearby seamounts were deposited sporadically on the Basin floor well below the carbonate compensation depth (CCD) at abyssal depths of 5000 to 6000 m. These depths, characterized by an indigenous assemblage of benthic foraminifers, recrystallized radiolarians, fish debris, and sponge spicules, existed in the Mariana Basin from late Aptian to the present. Early Albian and older edifice-building volcanism had reached the photic zone with associated shallow-water bank or reef environments. By middle Albian, the dominant source areas subsided to outer-neritic to upper-bathyal depths. Major volcanic activity ceased and fine-grained sediments were deposited by distal turbidites, although intermittent volcanism and the influx of rare neritic material continued until the late Albian. By the Cenomanian to Turonian, upper- to middle-bathyal depths were reached by the dominant source areas, and the sediments recovered from this interval include organic carbon-rich layers. Rare benthic foraminifers from the Coniacian-Santonian interval indicate a continuation of dominantly middle-bathyal source areas. A change in sedimentation during the Campanian-Maestrichtian from older zeolitic claystone to abundant chert in the Campanian, and nannofossil chalk and claystone in the Maestrichtian resulted from migration of the site beneath the equatorial productive zone due to northwestward plate motion. The appearance of rare middle-neritic and upper-bathyal species in the Maestrichtian interval associated with volcanogenic debris gives evidence of the remobilization and downslope transport of pelagic deposits due to thermally induced uplift. Episodic redeposition of shallow-water material during the Aptian-Albian was produced by edifice-building volcanism perhaps combined with eustatic lowering of sea level. The Cenomanian-Turonian pulse coincided with a low global sea-level stand as does the transported material during the Coniacian-Santonian. The Maestrichtian pulse was caused by renewed midplate volcanism that extended over a large area of the central Pacific.
Resumo:
Trigger weight (TWC) and piston (PC) cores obtained from surveys of the three sites drilled during Ocean Drilling Program (ODP) Leg 105 were studied in detail for benthic foraminiferal assemblages, total carbonate (all sites), planktonic foraminiferal abundances (Sites 645 and 647), and stable isotopes (Sites 646 and 647). These high-resolution data provide the link between modern environmental conditions represented by the sediment in the TWC and the uppermost cores of the ODP holes. This link provides essential control data for interpretating late Pleistocene paleoceanographic records from these core holes. At Site 645 in Baffin Bay, local correlation is difficult because the area is dominated by ice-rafted deposits and by debris flows and/or turbidite sedimentation. At the two Labrador Sea sites (646 and 647), the survey cores and uppermost ODP cores can be correlated. High-resolution data from the site survey cores also provide biostratigraphic data that refine the interpretations compiled from core-catcher samples at each ODP site.
Resumo:
Benthic foraminiferal assemblages from northeast Atlantic DSDP Sites 609, 610, and 611 have been interpreted with reference to modern assemblages known to be linked with the overlying bottom-water masses. It is shown that the water masses in the late Miocene to Pleistocene were similar to those of today. The distribution of the water masses changed with time, however. Antarctic Bottom Water ("AABW"), which at present is restricted to the area south of the Azores, reached as far north as the Gibbs Fracture Zone in the early Pliocene. Increased production of North Atlantic Deep Water in the late Pliocene displaced the AABW to the south
Resumo:
We propose a new biostratigraphic scheme comprising the Eucyrtidium spinosum, Eucyrtidium antiquum (new), Lychnocanoma conica (emended), Clinorhabdus robusta (emended) and Stylosphaera radiosa (emended) Zones, in ascending order, in Eocene to Oligocene sediments drilled on Maud Rise in Southern Atlantic Ocean (Site 689, Ocean Drilling Program Leg 113). The bases of these zones are defined by the lowermost occurrences of E. spinosum, E. antiquum, L. conica, C. robusta and the uppermost occurrence of Axoprunum irregularis (?), respectively. From correlation to the magnetostratigraphic data, the E. spinosum, E. antiquum, L. conica, C. robusta and S. radiosa Zones are assigned to the late middle Eocene through late Eocene (Subchrons C17n2 to C13r), earliest Oligocene (C13n to C11n), late early Oligocene (C11n to C10n2), early late Oligocene (C10n1 to C8r) and latest Oligocene (C8r to C7An), respectively. The four boundary datum levels and supplementary datum levels such as the lowermost occurrences of A. irregularis (?), Dicolocapsa microcephala and Lithomelissa challengerae may be recognized in other ODP sites in the Southern Ocean. The first occurrence of E. antiquum approximates the Eocene-Oligocene boundary in Southern Ocean but the last occurrences of many species such as Periphaena decora, D. microcephala and the Lithomelissa sphaerocephalis group are commonly diachronous between high latitude sites. Two new species, Theocyrtis (?) triapenna and Spirocyrtis parvaturris, are described.
Resumo:
An Eocene-Oligocene oxygen and carbon isotope history based on planktonic and benthic foraminifers from Deep Sea Drilling Project Leg 71 cores has been constructed for the Maurice Ewing Bank of the eastern Falkland Plateau, Southwest Atlantic Ocean. Specifically, the cores cover portions of the middle Eocene, upper Eocene, and lower Oligocene. Surface water isotopic temperatures postulated for the middle Eocene at Site 512 fluctuated within about four degrees but generally averaged about 9°C. Bottom isotopic temperatures at Site 512 (water depth, 1846 m) were generally a degree lower than surface water temperatures. Surface water isotopic temperatures at Site 511 initially averaged about 11°C during the late Eocene, but dropped to an average of 7°C in the early Oligocene. Bottom isotopic temperatures at Site 511 (water depth, 2589 m) generally record temperatures between 12.5°C and 8°C, similar to the range in the surface water isotopic temperatures. During the early Oligocene, bottom isotopic temperatures dropped sharply and averaged about 2°C (very close to present-day values). Surface water temperature values also decreased to an average of about 7°C, therefore leading to a significant divergence between surface and bottom water isotopic temperatures during the early Oligocene. Comparisons among Southern Ocean DSDP Sites 511, 512, and 277, and between these and other DSDP sites from central and northern latitudes (Sites 44, 167, 171, 292, 357, 398, 119, and 401) show that much of the Eocene was characterized by relatively warm temperatures until sometime in either the middle Eocene, late Eocene, or early Oligocene. At each site, conspicuous 18O enrichments occur in both the benthic and planktonic foraminifers over a relatively short period of time. Although a general trend toward a climatic deterioration is evident, the density of data points among the various studies is still too sparse to determine either synchrony or time-transgression between the major isotopic events. A close correlation could be made between the Site 511 oxygen isotope temperature curve and paleoclimatic trends derived independently from radiolarian studies. The sharp temperature drop and the divergence between bottom and surface water temperatures during the early Oligocene apparently reflect a major expansion of the antarctic water mass. The migration of the boundary between the subantarctic and antarctic water masses over the site at this time would account in part for the sharp temperature changes. Sharp changes of this nature would not necessarily be noted in other geographic areas, particularly those to the north which have different oceanographic regimes.
Resumo:
The impact of an asteroid at the Cretaceous/Paleogene (K/Pg) boundary triggered dramatic biotic, biogeochemical and sedimentological changes in the oceans that have been intensively studied. Paleo-biogeographical differences in the biotic response to the impact and its environmental consequences, however, have been less well documented. We present a high-resolution analysis of benthic foraminiferal assemblages at Southern Ocean ODP Site 690 (Maud Rise, Weddell Sea, Antarctica). At this high latitude site, late Maastrichtian environmental variability was high, but benthic foraminiferal assemblages were not less diverse than at lower latitudes, in contrast to those of planktic calcifiers. Also in contrast to planktic calcifiers, benthic foraminifera did not suffer significant extinction at the K/Pg boundary, but show transient assemblage changes and decreased diversity. At Site 690, the extinction rate was even lower (~3%) than at other sites. The benthic foraminiferal accumulation rate varied little across the K/Pg boundary, indicating that food supply to the sea floor was affected to a lesser extent than at lower latitude sites. Compared to Maastrichtian assemblages, Danian assemblages have a lower diversity and greater relative abundance of heavily calcified taxa such as Stensioeina beccariiformis and Paralabamina lunata. This change in benthic foraminiferal assemblages could reflect post-extinction proliferation of different photosynthesizers (thus food for the benthos) than those dominant during the Late Cretaceous, therefore changes in the nature rather than in the amount of the organic matter supplied to the seafloor. However, severe extinction of pelagic calcifiers caused carbonate supersaturation in the oceans, thus might have given competitive advantage to species with large, heavily calcified tests. This indirect effect of the K/Pg impact thus may have influenced the deep-sea dwellers, documenting the complexity of the effects of major environmental disturbance.
Resumo:
Upper Pliocene and Pleistocene abundance fluctuations of the radiolarian Cycladophora davisiana (Ehrenberg) davisiana (Petrushevskaya) are documented from North Atlantic (Site 609) and Labrador Sea (Site 646B) to provide the first long-term correlation of its abundance fluctuations to oxygen isotope stages 1-114. Also examined are temporal and regional fluctuations in abundances C. d. davisiana and the global dispersal routes of the species. The first occurrence of C. d. davisiana in the eastern North Atlantic Ocean (Site 609) occurred between 2.586 and 2.435 Ma (oxygen isotope stages 109.66-102.19). During the early Matuyama Chron, prior to oxygen isotope stage 63, C. d. davisiana abundances were less than 1% and never greater than 12%, while abundances of greater than 5% are found in stages 65.71-73, 74, and 83-84. The initial major abundance peak (35.7%) of C. d. davisiana was noted near the stage 63/62 boundary. Abundance peaks of greater than 15%, between oxygen isotope stages 35 and 63, are limited to stages 63.02, 58.07, 55.07-54.26, and 50.76-50.22. These represent the only such abundance peaks detected during the first c. 1.5 million years of the species within the North Atlantic. The character of C. d. davisiana abundance fluctuations in Site 609 changes after oxygen isotope stage 35; average abundances are greater (7.7% vs. 4.3%) and abundance maxima of more than 15% are more frequent. Many, but not all, peak abundances of C. d. davisiana occur in glacial stages (e.g., 8, 14, 18, 20, 26, 30, 34, 50, 54, and 58). Increased abundances of the species are also noted in weak interglacial stages (e.g., stages 3, 23, 39, and 41), and significant cool periods of robust interglacial periods (e.g., late stage 11). Sample spacing is adequate in some stages to note some rapid changes in abundance near stage transitions (e.g., stages 4/5, 25/26, 62/63). The sample density in Holes 609 and 611 and the upper portion of 646B is sufficient to detect a synchroneity of many abundance maxima and minima among sites. Some abundance peaks are undetected in one or more of the two holes, warranting further sampling to obtain a more accurate record of regional abundance fluctuations. Prior to stage 36, few ages of Hole 611 peaks are the same as those in the more precisely dated Hole 609. The highest abundances of C. d. davisiana were noted in Labrador Sea Hole 646B where the earliest known occurrence of the species is documented (3.08-2.99 Ma). C. d. davisiana is inferred to have evolved in the Labrador Sea (or Arctic), and migrated next through the Arctic into the North Pacific (2.62-2.64 Ma, stage 114) before migrating into the Norwegian Sea (2.63-2.53 Ma) and North Atlantic (2.59-2.44 Ma, stages 109-102). Additional migration of C. d. dauisiana into the southern South Atlantic (Site 704) occurred much later (2.06 Ma, stage 83).
Resumo:
The Pliocene-Holocene sediments recovered on ODP Leg 114 from Holes 699A, 701C, and 704B are the subject of a detailed investigation to interpret changes in the Oceanographic environment of the South Atlantic in the vicinity of the Polar Front Zone (PFZ). The cores sample sediments at shallow (Hole 704B, 2532 m), intermediate (Hole 699A, 3716 m), and basinal (Hole 701C, 4647 m) depths. Sites 699 and 704 come under the influence of the Antarctic Circumpolar Current (ACC) and Circumpolar Deep Water. It is possible that the upper reaches of Antarctic Bottom Water (AABW) may also affect Hole 699A. Site 701 is influenced by AABW. Closely spaced samples were analyzed for grain-size distribution, sand fraction components, biosiliceous microfossils, organic carbon, and water content. PFZ migrations are traced using changes in bulk sedimentaccumulation rates and the abundance of the diatoms Actiniscus ssp. and Genus et species indet. 1 Fenner (1991), as well as changes in sediment grain size and composition. Diatomaceous sediments of Gilbert age in Hole 699A indicate that the PFZ was positioned over this site, but during the Gauss it migrated north, bringing in less productive Antarctic Surface Water. All cores document a very gradual southerly movement of the PFZ throughout the Matuyama (with some sharp fluctuations of the northen PFZ border over Site 704 between 1.45 and 1.83 m.y.). This regressive shift culminated in the late Matuyama. The latest Matuyama to earliest Brunhes record in Hole 699A has been removed by a hiatus lasting from 1.0 to 0.6 m.y., which was probably caused by intensification of the deep-reaching ACC. The corresponding interval in Hole 704B, the shallowest core, contains evidence of winnowing. Sharp fluctuations of large amplitude and high frequency in the lithology of the sediments from Hole 704B in the eastern South Atlantic, starting at about 0.75 m.y. and characterizing the whole Brunhes Epoch, record the rapid movement of the northern border of the PFZ over the site. These reflect strong glacial/interglacial alternations in climate. To a lesser extent, lithologic fluctuations in Hole 701C reflect the same phenomenon, whereas in Hole 699A the lithology does not vary as dramatically.
Resumo:
Millennial-scale paleoceanographic changes in the Bering Sea during the last 71 kyrs were reconstructed using geochemical and isotope proxies (biogenic opal, CaCO3, and total organic carbon (TOC), nitrogen and carbon isotopes of sedimentary organic matters) and microfossil (radiolaria and foraminifera) data from two cores (PC23A and PC24A) which were collected from the northern continental slope area at intermediate water depths. Biogenic opal and TOC contents were generally high with high sedimentation rates during the last deglaciation. Laminated sediment depositions during the Early-Holocene (EH) and Bølling-Allerød (BA) were closely related with the increased primary productivity recorded by high biogenic opal and TOC contents and high d15N values. Enhanced surface-water productivity was attributed to increased nutrient supply from strengthened Bering Slope Current (BSC) and from increased amount of glacial melt-water, resulting in high C/N ratios and low d13C values, and high proportion of Rhizoplegma boreale during the last deglaciation. In contrast, low surface-water productivity during the last glacial period was due to depleted nutrient supply caused by strong stratification and to restricted phytoplankton bloom by extensive sea ice distribution under cold climates. Extensive formation of sea ice produces more oxygen-rich intermediate-water, leading to oxic bottom-water conditions due to active ventilation, which favored good preservation of oxic benthic foraminifera species. Remarkable CaCO3 peaks coeval with high biogenic opal and TOC contents in both cores during MIS 3 to MIS 4 are most likely correlated with Dansgaard-Oeschger (D-O) events. High d15N and d13Corg values during D-O interstadials support increased surface-water productivity resulting from nutrients supplied mainly by intensified BSC. During the EH, BA and D-O interstadials, dominant benthic foraminifera species indicate dysoxic bottom-water conditions as a result of increased surface-water productivity and weak ventilation of intermediate-water with mitigated sea ice development caused by strengthening of the Alaskan Stream. It is of note that the bottom-water conditions and formation of intermediate-water in the Bering Sea during the last glacial period are related to the variation of dissolved oxygen concentration of the bottom-water in the northeastern Pacific and to strong ventilation of intermediate-water in the northwestern Pacific. Thus, the millennial-scale paleoceanographic events in the Bering Sea during the D-O interstadials are closely associated with the intermediate-water ventilation, ultimately leading to weakening of North Pacific Intermediate Water.