945 resultados para Counter-insurgency
Resumo:
The transmembrane proton gradient (ΔpH) is the primary source of energy exploited by secondary active substrate/H+ antiporters to drive the electroneutral transport of substrates across the Escherichia coli (E. coli) inner membrane. Such electroneutral transport results in no net movement of charges across the membrane. The charge on the transported substrate and the stoichiometry of the exchange reaction, however, can result in an electrogenic reaction which is driven by both the ΔpH and the electrical (∆Ψ) components of the proton electrochemical gradient, resulting in a net movement of electrical charges across the membrane. We have shown that the major facilitator superfamily transporter MdtM - a multidrug efflux protein from E. coli that functions physiologically in protection of bacterial cells against bile salts - imparts bile salt resistance to the bacterial cell by coupling the exchange of external protons (H+) to the efflux of bile salts from the cell interior via an electrogenic antiport reaction (Paul et al., 2014). This protocol describes, using fluorometry, how to detect electrogenic antiport activity of MdtM in inverted membrane vesicles of an antiporter-deficient strain of E. coli TO114 cells by measuring transmembrane ∆Ψ. The method exploits changes that occur in the intensity of the fluorescence signal (quenching and dequenching) of the probe Oxonol V in response to changes in membrane potential due to the MdtM-catalysed sodium cholate/H+ exchange reaction. The protocol can be adapted to detect activity of any secondary active antiporter that couples the electrogenic translocation of H+ across a biological membrane to that of its counter-substrate, and may be used to unmask otherwise camouflaged transport activities and physiological roles.
Resumo:
Cough remains a serious unmet clinical problem, both as a symptom of a range of other conditions such as asthma, chronic obstructive pulmonary disease, gastroesophageal reflux, and as a problem in its own right in patients with chronic cough of unknown origin. This article reviews our current understanding of the pathogenesis of cough and the hypertussive state characterizing a number of diseases as well as reviewing the evidence for the different classes of antitussive drug currently in clinical use. For completeness, the review also discusses a number of major drug classes often clinically used to treat cough but that are not generally classified as antitussive drugs. We also reviewed a number of drug classes in various stages of development as antitussive drugs. Perhaps surprising for drugs used to treat such a common symptom, there is a paucity of well-controlled clinical studies documenting evidence for the use of many of the drug classes in use today, particularly those available over the counter. Nonetheless, there has been a considerable increase in our understanding of the cough reflex over the last decade that has led to a number of promising new targets for antitussive drugs being identified and thus giving some hope of new drugs being available in the not too distant future for the treatment of this often debilitating symptom.
Resumo:
A detailed knowledge of the physical phenomena underlying the generation and the transport of fast electrons generated in high-intensity laser-matter interactions is of fundamental importance for the fast ignition scheme for inertial confinement fusion.
Here we report on an experiment carried out with the VULCAN Petawatt beam and aimed at investigating the role of collisional return currents in the dynamics of the fast electron beam. To that scope, in the experiment counter-propagating electron beams were generated by double-sided irradiation of layered target foils containing a Ti layer. The experimental results were obtained for different time delays between the two laser beams as well as for single-sided irradiation of the target foils. The main diagnostics consisted of two bent mica crystal spectrometers placed at either side of the target foil. High-resolution X-ray spectra of the Ti emission lines in the range from the Ly alpha to the K alpha line were recorded. In addition, 2D X-ray images with spectral resolution were obtained by means of a novel diagnostic technique, the energy-encoded pin-hole camera, based on the use of a pin-hole array equipped with a CCD detector working in single-photon regime. The spectroscopic measurements suggest a higher target temperature for well-aligned laser beams and a precise timing between the two beams. The experimental results are presented and compared to simulation results.
Resumo:
The use of anodic stripping voltammetry (ASV)has been proven in the past to be a precise and sensitive analytical method with an excellent limit of detection. Electrochemical sensors could help to avoid expensive and time consuming procedures as sample taking and storage and provide a both sensitive and reliable method for the direct monitoring of heavy metals in the aquatic environment. Solid electrodes which have been used in this work, were produced using previously developed methods. Commercially available and newly designed, screen printed carbon and gold plated working electrodes (WE) were compared. Good results were achieved with the screen printed and plated electrodes under conditions optimized for each electrode material. The electrode stability, reproducibility of single measurements and the limit of detection obtained for Pb were satisfactory (3*10-6mol/l on screen printed carbon WEs after 60 s of deposition and 6*10-6 mol/l on gold plated WEs after 5 min of deposition). Complete 3-electrode-sets (counter, reference and working electrode) were screen printed on different substrates (glass, polycarbonate and alumina). Also here, both carbon and gold were used as WE. Using 3-electrode-sets with a gold plated WE on glass was a limit of detection of 7*10-7 mol/l was achieved after only 60 s of deposition.
Resumo:
Cao et al. reported a possible progenitor detection for the Type Ib supernovae iPTF13bvn for the first time. We find that the progenitor is in fact brighter than the magnitudes previously reported by approximately 0.7-0.2 mag with a larger error in the bluer filters. We compare our new magnitudes to our large set of binary evolution models and find that many binary models with initial masses in the range of 10-20M(circle dot) match this new photometry and other constraints suggested from analysing the supernova. In addition, these lower mass stars retain more helium at the end of the model evolution indicating that they are likely to be observed as Type Ib supernovae rather than their more massive, Wolf-Rayet counter parts. We are able to rule out typical Wolf-Rayet models as the progenitor because their ejecta masses are too high and they do not fit the observed SED unless they have a massive companion which is the observed source at the supernova location. Therefore only late-time observations of the location will truly confirm if the progenitor was a helium giant and not a Wolf-Rayet star.
Resumo:
Dye-sensitized solar cells (DSCs) are promising alternatives to conventional silicon devices because of their simple fabrication procedure, low cost, and high efficiency. Platinum is generally used as a superior counter electrode (CE) material, but the disadvantages such as high cost and low abundance greatly restrict the large-scale application of DSCs. An efficient and sustainable way to overcome the limited supply of Pt is the development of high-efficiency Pt-free CE materials, which should possess both high electrical conductivity and superior electrocatalytic activity simultaneously. Herein, for the first time, a two-step strategy to synthesize ruthenium dioxide (RuO2) nanocrystals is reported, and it is shown that RuO2 catalysts exhibit promising electrocatalytic activity towards triiodide reduction, which results in comparable energy conversion efficiency to that of conventional Pt CEs. More importantly, by virtue of first-principles calculations, the catalytic mechanism of electrocatalysis for triiodide reduction on various CEs is investigated systematically and it is found that the electrochemical triiodide reduction reaction on RuO2 catalyst surfaces can be enhanced significantly, owing to the ideal combination of good electrocatalytic activity and high electrical conductivity.
Resumo:
The efficient electrocatalysts for many heterogeneous catalytic processes in energy conversion and storage systems must possess necessary surface active sites. Here we identify, from X-ray photoelectron spectroscopy and density functional theory calculations, that controlling charge density redistribution via the atomic-scale incorporation of heteroatoms is paramount to import surface active sites. We engineer the deterministic nitrogen atoms inserting the bulk material to preferentially expose active sites to turn the inactive material into a sufficient electrocatalyst. The excellent electrocatalytic activity of N-In2O3 nanocrystals leads to higher performance of dye-sensitized solar cells (DSCs) than the DSCs fabricated with Pt. The successful strategy provides the rational design of transforming abundant materials into high-efficient electrocatalysts. More importantly, the exciting discovery of turning the commonly used transparent conductive oxide (TCO) in DSCs into counter electrode material means that except for decreasing the cost, the device structure and processing techniques of DSCs can be simplified in future.
Resumo:
Platinum (Pt) nanocrystals have demonstrated to be an effective catalyst in many heterogeneous catalytic processes. However, pioneer facets with highest activity have been reported differently for various reaction systems. Although Pt has been the most important counter electrode material for dye-sensitized solar cells (DSCs), suitable atomic arrangement on the exposed crystal facet of Pt for triiodide reduction is still inexplicable. Using density functional theory, we have investigated the catalytic reaction processes of triiodide reduction over {100}, {111} and {411} facets, indicating that the activity follows the order of Pt(111) > Pt(411) > Pt(100). Further, Pt nanocrystals mainly bounded by {100}, {111} and {411} facets were synthesized and used as counter electrode materials for DSCs. The highest photovoltaic conversion efficiency of Pt(111) in DSCs confirms the predictions of the theoretical study. These findings have deepened the understanding of the mechanism of triiodide reduction at Pt surfaces and further screened the best facet for DSCs successfully.
Resumo:
This paper offers a critical reflection upon the use of a grounded theory approach within a doctoral study. As well as providing an outline of grounded theory, it begins by noting the existence of some powerful critiques of a grounded theory approach, in particular around the key concepts of ‘theory’, ‘discovery’ and ‘ground’. It is argued that, in some cases, grounded theory struggles to counter these challenges, especially in its ‘purist’ forms. However, with reference to research carried out as part of a PhD study of sharing education in Northern Ireland which employed a grounded theory approach, a case is made for an open and critical grounded theory based upon three principles: pragmatism; research as practice; and reflexivity. It is concluded that a reasonable case can be made for grounded theory where: grounded theory researchers maintain a balance between belonging to and critique of the grounded theory community; where there is an emphasis upon theorizing rather than the discovery of theory; and where the strengths of grounded theory as 'practice' and 'craft' are maximised.
Resumo:
This chapter explores the extent to which courts can contribute to the countering of terrorism. It suggests that the contribution will depend on the type of actor the courts are attempting to hold to account as well as on the powers that are conferred on courts by national and international legal regimes. It concludes that courts are most legitimate and effective in relation to terrorist suspects and law enforcers, but less so in relation to counter-terrorism operatives and law-makers.
Resumo:
This third edition of Conflicts in the Middle East since 1945 analyzes the nature of conflict in the Middle East, with its racial, ethnic, political, cultural, religious and economic factors. Throughout the book Peter Hinchcliffe and Beverley Milton-Edwards put the main conflicts into their wider context, with thematic debates on issues such as the emergence of radical Islam, the resolution of conflicts, diplomacy and peace-making, and the role of the superpowers.
The book is brought fully up to date with events in the Middle East, covering, for instance, developments in Iraq in 2006 where a democratically elected government is in place but the insurgency show no sign of coming under control. The analysis of the Palestinian/Israeli conflict is also brought up to the present day, to include the election of the Hamas government and the 2006 conflict between Israel and Lebanon’s Hizballah.
Including a newly updated bibliography and maps of the area, this is the perfect introduction for all students wishing to understand the complex situation in the Middle East, in its historical context.
Resumo:
Contested Open Spaces?: Access and control issues in Tundikhel, Kathmandu
Public spaces play a role of political, economic and cultural transformation of cities and the impact of these transformations on the nature of public space.
Urban open space(s) in Kathmandu have been an important part of the city’s urbanism. Historically they have played an important role in the city as spaces for religious, cultural, social and political and military activities during the 300 years of unified monarchy. Throughout the civil war period (Maoist insurgency between 1996 and 2006) they became material locations for political activities, and a site for protests and dharnas. In post-conflict Kathmandu, especially since the abolition of Monarchy in May 28, 2008, these spaces are increasingly seen being claimed by street hawkers, informal sellers and individuals reflecting a new set of users and functions, whereas a significant part of Tundikhel still remains under the military occupation posing important questions around access, identity and control of an important space.
Public spaces are broadly defined as crossroads where different paths and trajectories meet, sometimes overlapping and other times colliding (Madanipour, 2003). Using Tudikhel in Kathmandu, this research examines the increasing collision and contestations witnessed through social, political and neoliberal interactions. It explores how spaces are constantly
contested, negotiated and as a result reshaped through these interactions. It is observed that multiple forces are at play to gain control and access of this important open space, leading to increasing fragmentation of the space, and erosion of its historic significance both as cultural venue and a symbol of democracy in modern Nepal. It is argued that increasing disconnection of Tudikhel from wider urban setting has contributed to exacerbation of these contestations
Resumo:
There is a substantial body of evidence – going back over decades – which indicates that the employment sphere is difficult for those who suffer a speech disability. To a large extent, I argue, this is due to the setting of merit in terms of orality and aesthetic. It also relates to the low perception of competence of the speech disabled. I argue that to be effective against discrimination the notion of merit and its assessment requires focus. ‘Merit’ as a concept in discrimination law has had its critics, yet it remains important to investigate it as social construct in order to help understand discrimination and how to counter this. For example, in this article I look at an instance where the resetting of what was viewed as ‘meritorious’ in judicial recruitment successfully improved the diversity in lower judicial posts.
Further, given the relative failure of the employment tribunal system to improve the general position of those who are disabled, I look to alternative methods of countering disability discrimination. The suggestion provided is that an enforced ombudsman type approach capable of dealing with what may be the core issue around employment discrimination (‘merit’) would provide a better mechanism for handling the general situation of disability discrimination than the tribunal system.
Resumo:
During the past twenty years, the UK has relied heavily on Public Private Partnerships (PPP) and especially the Private Finance Initiative in the procurement of infrastructure and services. Discussing the causes of the credit crunch and its effects on PPP, this paper notes that the provision of new public sector infrastructure and related services has been adversely affected by the impact of the credit crunch on Private Finance Initiatives (PFIs). These problems have arisen primarily from the unwillingness of commercial banks to replace collapsed PFI bond financing unless new PFI contracts reduce financial risks; which, in turn, is likely to increase the cost of these projects to the public sector. Additional financial strains have arisen for the UK government from the need to bail out collapsed PFI projects. Overall we find evidence that the UK commitment to PFI has not only increased immediate fiscal pressures on the UK when these have become least palatable, but has also created fiscal vulnerabilities at local and national levels which are likely to hamper the country’s ability to launch counter-cyclical responses to the ongoing crisis.
Resumo:
Purpose The aim of this study is to improve the drug release properties of antimicrobial agents from hydrophobic biomaterials using using an ion pairing strategy. In so doing antimicrobial agents may be eluted and maintained over a sufficient time period thereby preventing bacterial colonisation and subsequent biofilm formation on medical devices. Methods The model antimicrobial agent was chlorhexidine and the selected fatty acid counter ions were capric acid, myristic acid and stearic acid. The polymethyl methacrylate films were loaded with 2% of fatty acid:antimicrobial agent at the following molar ratios; 0.5:1M, 1:1M and 2:1M and thermally polymerized using azobisisobutyronitrile initiator. Drug release experiments were subsequently performed over a 3-month period and the mass of drug released under sink conditions (pH 7.0, 37oC) quantified using a validated HPLC-UV method. Results In all platforms, a burst of chlorhexidine release was observed over the initial 24-hour period. Similar release kinetics were observed between the formulations during the initial 28 days. However, as time progressed, the chlorhexidine baseline plateaued after 56 days whereas formulations containing the counterions appeared to continuously elute linearly with time. As can be observed in figure 1, the rank order of total chlorhexidine release in the presence of 0.5M fatty acid was myristic acid (40%) > capric acid (35%) > stearic acid (30%)> chlorhexidine baseline (15%). Conclusion The incorporation of fatty acids within the formulation significantly improved chlorhexidine solubility within both the monomer and the polymer and enhanced the drug release kinetics over the period of study. This is attributed to the greater diffusivity of chlorhexidine through PMMA in the presence of fatty acids. In th absence of fatty acids, chlorhexidine release was facilitated by dissolution of surface associated drug particles. This study has illustrated the ability of fatty acids to modulate chlorhexidine release from a model biomaterial through enhanced diffusivity. This strategy may prove advantageous for improved medical devices with enhanced resistance to infection.