962 resultados para Cortex somatosensoriel
Resumo:
The superior colliculus (SC) is a mesencephalic area involved in the mediation of defensive movements associated with cardiovascular changes. Noradrenaline (NA) is a neurotransmitter with an important role in central cardiovascular regulation exerted by several structures of the central nervous system. Although noradrenergic nerve terminals have been observed in the SC, there are no reports on the effects of local NA injection into this area. Taking this into consideration, we studied the cardiovascular effects of NA microinjection into the SC of unanesthetized rats. Microinjection of NA into the SC evoked a dose-dependent blood pressure increase and a heart rate decrease in unanesthetized rats. The pressor response to NA was not modified by intravenous pretreatment with the vasopressin v(1)-receptor antagonist dTyr(CH(2))(5) (Me)AVP, indicating a lack of vasopressin involvement in the response mediation. The effect of NA microinjection into the SC was blocked by intravenous pretreatment with the ganglionic blocker pentolinium, indicating its mediation by the sympathetic nervous system. Although the pressor response to NA was not affected by adrenal demedullation, the accompanying bradycardia was potentiated, suggesting some involvement of the sympathoadrenal system in the cardiovascular response to NA microinjection into the SC. In summary, results indicate that stimulation of noradrenergic receptors in the SC causes cardiovascular responses which are mediated by activation of both neural and adrenal sympathetic nervous system components. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The lateral part of intermediate layer of superior colliculus (SCI) is a critical substrate for successful predation by rats. Hunting-evoked expression of the activity marker Fos is concentrated in SCI while prey capture in rats with NMDA lesions in SCI is impaired. Particularly affected are rapid orienting and stereotyped sequences of actions associated with predation of fast moving prey. Such deficits are consistent with the view that the deep layers of SC are important for sensory guidance of movement. Although much of the relevant evidence involves visual control of movement, less is known about movement guidance by somatosensory input from vibrissae. Indeed, our impression is that prey contact with whiskers is a likely stimulus to trigger predation. Moreover, SCI receives whisker and orofacial somatosensory information directly from trigeminal complex, and indirectly from zona incerta, parvicelular reticular formation and somatosensory barrel cortex. To better understand sensory guidance of predation by vibrissal information we investigated prey capture by rats after whisker removal and the role of superior colliculus (SC) by comparing Fos expression after hunting with and without whiskers. Rats were allowed to hunt cockroaches, after which their whiskers were removed. Two days later they were allowed to hunt cockroaches again. Without whiskers the rats were less able to retain the cockroaches after capture and less able to pursue them in the event of the cockroach escaping. The predatory behaviour of rats with re-grown whiskers returned to normal. In parallel, Fos expression in SCI induced by predation was significantly reduced in whiskerless animals. We conclude that whiskers contribute to the efficiency of rat prey capture and that the loss of vibrissal input to SCI, as reflected by reduced Fos expression, could play a critical role in predatory deficits of whiskerless rats. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The aims of this study were to characterize the spatial distribution of neurodegeneration after status epilepticus (SE) induced by either systemic (S) or intrahippocampal (H) injection of pilocarpine (PILO), two models of temporal lobe epilepsy (TLE), using FluoroJade (FJ) histochemistry, and to evaluate the kinetics of FJ staining in the H-PILO model. Therefore, we measured the severity of behavioral seizures during both types of SE and also evaluated the FJ staining pattern at 12, 24, and 168 h (7 days) after the H-PILO insult. We found that the amount of FJ-positive (FJ+) area was greater in SE induced by S-PILO as compared to SE induced by H-PILO. After SE induced by H-PILO, we found more FJ+ cells in the hilus of the dentate gyrus (DG) at 12 h, in CA3 at 24 h, and in CA1 at 168 h. We found also no correlation between seizure severity and the number of FJ+ cells in the hippocampus. Co-localization studies of FJ+ cells with either neuronal-specific nuclear protein (NeuN) or glial fibrillary acidic protein (GFAP) labeling 24 h after H-PILO demonstrated spatially selective neurodegeneration. Double labeling with FJ and parvalbumin (PV) showed both FJ+/PV+ and FJ+/PV- cells in hippocampus and entorhinal cortex, among other areas. The current data indicate that FJ+ areas are differentially distributed in the two TLE models and that these areas are greater in the S-PILO than in the H-PILO model. There is also a selective kinetics of FJ+ cells in the hippocampus after SE induced by H-PILO, with no association with the severity of seizures, probably as a consequence of the extra-hippocampal damage. These data point to SE induced by H-PILO as a low-mortality model of TLE, with regional spatial and temporal patterns of FJ staining. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Epileptic seizures are clinical manifestations of neuronal discharges characterized by hyperexcitability and/or hypersynchrony in the cortex and other subcortical regions. The pilocarpine (PILO) model of epilepsy mimics temporal lobe epilepsy (TLE) in humans. In the present study, we used a more selective approach: microinjection of PILO into the hilus of the dentate gyrus (H-PILO). Our main goal was to evaluate the behavioral and morphological alterations present in this model of TLE. Seventy-six percent of all animals receiving H-PILO injections had continuous seizures called status epilepticus (SE). A typical pattern of evolution of limbic seizures during the SE with a latency of 29.3 +/- 16.3 minutes was observed using an analysis of behavioral sequences. During the subsequent 30 days, 71% of all animals exhibited spontaneous recurrent seizures (SRSs) during a daily 8-hour videotaping session. These SRSs had a very conspicuous and characteristic pattern detected by behavioral sequences or neuroethological analysis. Only the animals that had SE showed positive Neo-Timm staining in the inner molecular layer of the dentate gyrus (sprouting) and reduced cell density in Ammon`s horn pyramidal cell subfield CA1. However, no correlation between the intensity of sprouting and the mean number and total number of SRSs was found. Additionally, using Fluoro-Jade staining, we observed neurodegeration in the hilus and pyramidal cell subfields CA3 and CM 24 hours after SE. These data indicate that H-PILO is a reliable, selective, efficient, low-mortality model that mimics the acute and chronic behavioral and morphological aspects of TLE. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The elevated plus-maze is an animal model used to study anxiety. In a second session, rats show a reduction in the exploratory behavior even when the two sessions are separated by intervals as large as 7 days. The aim of the present study was to investigate whether the reduction in the exploratory behavior is maintained after intervals larger than 7 days. Additionally, we aimed at investigating eventual correlations between behaviors in the plus-maze and activation of limbic structures as measured by Fos protein expression after the second session. Rats were tested for 5 min in the elevated plus-maze and re-tested 3, 9 or 33 days later. Other groups were tested only once. The rat brains were processed for immunohistochemical detection of Fos protein. The results show a decrease in the open arms exploration in the second trial with intervals of 3, 9 and 33 days. The expression of Fos protein in the piriform cortex, septal nucleus and paraventricular hypothalamic nucleus in the groups tested with intervals of 9 and 33 days were statistically different from the other groups. The alterations observed in exploratory behavior in the second session in the plus-maze did not correlate with Fos expression. In conclusion, although the specific test conditions were sufficient to evoke behavioral alterations in exploration in the elevated plus-maze, they were enough to induce significant Fos protein expression in piriform cortex, septal nucleus and thalamic and hypothalamic paraventricular nuclei but not in other areas such as dorsomedial nucleus of the hypothalamus and amygdala nuclei, known to be also active participants in circuits controlling fear and anxiety. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Ictal behavior coupled with SPECT findings during 28 seizures in patients with temporal lobe epilepsy (TLE) with unilateral hippocampal sclerosis (13 left; 15 right) was displayed as flowcharts from right-sided (RTLE) plus left-sided (LTLE) seizures. Ictal SPECT was classified blind to neuroethology. Behaviors were categorized as ipsilateral to the epileptogenic zone (IL), contralateral to the epileptogenic zone (CL), or bilateral. SPECT intensity and region were categorized as IL or CL to the epileptogenic zone. All patients developed automatisms and had hyperperfusion in their temporal lobes. Patients` verbal responses to questions had statistical interactions in RTLE but not in LTLE sum. Most CL dystonic posturing was correlated to IL basal ganglia hyperperfusion. Basal ganglia activation occurred in seizures without dystonic posturing and CL manual automatisms, and lack of IL dystonic posturing and the presence of CL cerebellar hemispheric hyperperfusion were also observed. Coupling of neuroethology and SPECT findings reliably evaluates ictal behavior and functionality of associated brain areas. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Modulation of salt appetite involves interactions between the circumventricular organs (CVOs) receptive areas and inhibitory hindbrain serotonergic circuits. Recent studies provide support to the idea that the serotonin action in the lateral parabrachial nucleus (LPBN) plays an important inhibitory role in the modulation of sodium appetite. The aim of the present work was to identify the specific groups of neurons projecting to the LPBN that are activated in the course of sodium appetite regulation, and to analyze the associated endocrine response, specifically oxytocin (OT) and atrial natriuretic peptide (ANP) plasma release, since both hormones have been implicated in the regulatory response to fluid reestablishment. For this purpose we combined the detection of a retrograde transported dye, Fluorogold (FG) injected into the LPBN with the analysis of the Fos immunocytochemistry brain pattern after sodium intake induced by sodium depletion. We analyzed the Fos-FG immunoreactivity after sodium ingestion induced by peritoneal dialysis (PD). We also determined OT and ANP plasma concentration by radioimmunoassay (RIE) before and after sodium intake stimulated by PD. The present study identifies specific groups of neurons along the paraventricular nucleus, central extended amygdala, insular cortex, dorsal raphe nucleus, nucleus of the solitary tract and the CVOs that are activated during the modulation of sodium appetite and have direct connections with the LPBN. It also shows that OT and ANP are released during the course of sodium satiety and fluid reestablishment. The result of this brain network activity may enable appropriate responses that re-establish the body fluid balance after induced sodium consumption. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
P>Purpose: The role of the superior colliculus (SC) in seizure expression is controversial and appears to be dependent upon the epilepsy model. This study shows the effect of disconnection between SC deep layers and adjacent tissues in the expression of acute and kindling seizures. Methods: Subcollicular transections, ablation of SC superficial and deep layers, and ablation of only the cerebral cortex were evaluated in the Wistar audiogenic rat (WAR) strain during acute and kindled audiogenic seizures. The audiogenic seizure kindling protocol started 4 days after surgeries, with two acoustic stimuli per day for 10 days. Acute audiogenic seizures were evaluated by a categorized seizure severity midbrain index (cSI) and kindled seizures by a severity limbic index (LI). Results: All subcollicular transections reaching the deep layers of the SC abolished audiogenic seizures or significantly decreased cSI. In the unlesioned kindled group, a reciprocal relationship between limbic and brainstem pattern of seizures was seen. The increased number of stimuli provoked an audiogenic kindling phenomenon. Ablation of the entire SC (ablation group) or of the cerebral cortex only (ctx-operated group) hampered the acquisition of limbic behaviors. There was no difference in cSI and LI between the ctx-operated and ablation groups, but there was a difference between ctx-operated and the unlesioned kindled group. There was also no difference in cSI between SC deep layer transection and ablation groups. Results of histologic analyses were similar for acute and kindled audiogenic seizure groups. Conclusions: SC deep layers are involved in the expression of acute and kindled audiogenic seizure, and the cerebral cortex is essential for audiogenic kindling development.
Resumo:
Brain excitability diseases like epilepsy constitute one factor that influences brain electrophysiological features. Cortical spreading depression (CSD) is a phenomenon that can be altered by changes in brain excitability. CSD propagation was presently characterized in adult mate and female rats from a normal Wistar strain and from a genetically audiogenic seizure-prone strain, the Wistar audiogenic rat (WAR), both previously submitted (RAS(+)), or not (RAS(-)), to repetitive acoustic stimulation, to provoke audiogenic kindling in the WAR-strain. A gender-specific change in CSD-propagation was found. Compared to seizure-resistant animals, in the RAS- condition, mate and female WARs, respectively, presented CSD-propagation impairment and facilitation, characterized, respectively, by lower and higher propagation velocities (P<0.05). In contraposition, in the RAS(+) condition, mate and female WARs displayed, respectively, higher and tower CSD-propagation rates, as compared to the corresponding controls. In some Wistar and WAR females, we determined estrous cycle status on the day of the CSD-recording as being either estrous or diestrous; no cycle-phase-related differences in CSD-propagation velocities were detected. In contrast to other epilepsy models, such as Status Epilepticus induced by pilocarpine, despite the CSD-velocity reduction, in no case was CSD propagation blocked in WARs. The results suggest a gender-related, estrous cycle-phase-independent modification in the CSD-susceptibility of WAR rats, both in the RAS(+) and RAS(-) situation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABA(A)-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABA(A)-mediated inhibition plays a pronounced role in NCM`s auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM`s neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABA(A) receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABA(A)-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks.
Resumo:
In social anxiety disorder (SAD), impairments in limbic/paralimbic structures are associated with emotional dysregulation and inhibition of the medial prefrontal cortex (MPFq. Little is known, however, about alterations in limbic and frontal regions associated with the integrated morphometric, functional, and structural architecture of SAD. Whether altered gray matter volume is associated with altered functional and structural connectivity in SAD. Three techniques were used with 18 SAD patients and 18 healthy controls: voxel-based morphometry; resting-state functional connectivity analysis; and diffusion tensor imaging tractography. SAD patients exhibited significantly decreased gray matter volumes in the right posterior inferior temporal gyrus (ITG) and right parahippocampal/hippocampal gyrus (PHG/HIP). Gray matter volumes in these two regions negatively correlated with the fear factor of the Liebowitz Social Anxiety Scale. In addition, we found increased functional connectivity in SAD patients between the right posterior ITG and the left inferior occipital gyrus, and between the right PHF/HIP and left middle temporal gyms. SAD patients had increased right MPFC volume, along with enhanced structural connectivity in the genu of the corpus callosum. Reduced limbic/paralimbic volume, together with increased resting-state functional connectivity, suggests the existence of a compensatory mechanism in SAD. Increased MPFC volume, consonant with enhanced structural connectivity, suggests a long-time overgeneralization of structural connectivity and a role of this area in the mediation of clinical severity. Overall, our results may provide a valuable basis for future studies combining morphometric, functional and anatomical data in the search for a comprehensive understanding of the neural circuitry underlying SAD. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Cannabidiol (CBD), a Cannabis sativa constituent, may present a pharmacological profile similar to mood stabilizing drugs, in addition to anti-oxidative and neuroprotective properties. The present study aims to directly investigate the effects of CBD in an animal model of mania induced by D-amphetamine (D-AMPH). In the first model (reversal treatment), rats received saline or D-AMPH (2 mg/kg) once daily intraperitoneal (i.p.) for 14 days, and from the 8th to the 14th day, they were treated with saline or CBD (15, 30 or 60 mg/kg) i.p. twice a day. In the second model (prevention treatment), rats were pretreated with saline or CBD (15, 30, or 60 mg/kg) regime i.p. twice a day, and from the 8th to the 14th day, they also received saline or D-AMPH i.p. once daily. In the hippocampus CBD (15 mg/kg) reversed the D-AMPH-induced damage and increased (30 mg/kg) brain-derived neurotrophic factor (BDNF) expression. In the second experiment, CBD (30 or 60 mg/kg) prevented the D-AMPH-induced formation of carbonyl group in the prefrontal cortex. In the hippocampus and striatum the D-AMPH-induced damage was prevented by CBD (15, 30 or 60 mg/kg). At both treatments CBD did not present any effect against D-AMPH-induced hyperactivity. In conclusion, we could not observe effects on locomotion, but CBD protect against D-AMPH-induced oxidative protein damage and increased BDNF levels in the reversal model and these effects vary depending on the brain regions evaluated and doses of CBD administered.
Resumo:
Objective: Cannabidiol is a chemical constituent from Cannabis sativa and it has multiple mechanisms of action, including antidepressant effects. The main objective of the present study was to evaluate behavioural and molecular effects induced by administration of cannabidiol and imipramine in rats. Methods: In the present study, rats were acutely or chronically treated for 14 days once a day with saline, cannabidiol (15, 30 and 60 mg/kg) or imipramine (30 mg/kg) and the animals behaviour was assessed in forced swimming and open-field tests. Afterwards, the prefrontal cortex, hippocampus and amygdala brain-derived neurotrophic factor (BDNF) levels were assessed by enzyme-linked immunosorbent sandwich assay. Results: We observed that both acute and chronic treatments with imipramine at the dose of 30 mg/kg and cannabidiol at the dose of 30 mg/kg reduced immobility time and increased swimming time; climbing time was increased only with imipramine at the dose of 30 mg/kg, without affecting locomotor activity. In addition, chronic treatment with cannabidiol at the dose of 15 mg/kg and imipramine at the dose of 30 mg/kg increased BDNF levels in the rat amygdala. Conclusion: In conclusion, our results indicate that cannabidiol has an antidepressant-like profile and could be a new pharmacological target for the treatment of major depression.
Resumo:
Oxidative stress plays an important role in the development of cognitive impairment in sepsis. Here we assess the effects of acute and extended administration of cannabidiol (CBD) on oxidative stress parameters in peripheral organs and in the brain, cognitive impairment, and mortality in rats submitted to sepsis by cecal ligation and perforation (CLP). To this aim, male Wistar rats underwent either sham operation or CLP. Rats subjected to CLP were treated by intraperitoneal injection with ""basic support"" and CBD (at 2.5, 5, or 10 mg/kg once or daily for 9 days after CLP) or vehicle. Six hours after CLP (early times), the rats were killed and samples from lung, liver, kidney, heart, spleen, and brain (hippocampus, striatum, and cortex) were obtained and assayed for thiobarbituric acid reactive species (TBARS) formation and protein carbonyls. On the 10th day (late times), the rats were submitted to the inhibitory avoidance task. After the test, the animals were killed and samples from lung, liver, kidney, heart, spleen, and brain (hippocampus) were obtained and assayed for TBARS formation and protein carbonyls. The acute and extended administration of CBD at different doses reduced TBARS and carbonyl levels in some organs and had no effects in others, ameliorated cognitive impairment, and significantly reduced mortality in rats submitted to CLP. Our data provide the first experimental demonstration that CBD reduces the consequences of sepsis induced by CLP in rats, by decreasing oxidative stress in peripheral organs and in the brain, improving impaired cognitive function, and decreasing mortality. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Cannabis sativa, the most widely used illicit drug, has profound effects on levels of anxiety in animals and humans. Although recent studies have helped provide a better understanding of the neurofunctional correlates of these effects, indicating the involvement of the amygdala and cingulate cortex, their reciprocal influence is still mostly unknown. In this study dynamic causal modelling (DCM) and Bayesian model selection (BMS) were used to explore the effects of pure compounds of C. sativa [600 mg of cannabidiol (CBD) and 10 mg Delta(9)-tetrahydrocannabinol (Delta(9)-THC)] on prefrontal-subcortical effective connectivity in 15 healthy subjects who underwent a double-blind randomized, placebo-controlled fMRI paradigm while viewing faces which elicited different levels of anxiety. In the placebo condition, BMS identified a model with driving inputs entering via the anterior cingulate and forward intrinsic connectivity between the amygdala and the anterior cingulate as the best fit. CBD but not Delta(9)-THC disrupted forward connectivity between these regions during the neural response to fearful faces. This is the first study to show that the disruption of prefrontal-subocrtical connectivity by CBD may represent neurophysiological correlates of its anxiolytic properties.