963 resultados para Conjunctive expressions
Resumo:
In this paper, an introduction to Bayesian methods in signal processing will be given. The paper starts by considering the important issues of model selection and parameter estimation and derives analytic expressions for the model probabilities of two simple models. The idea of marginal estimation of certain model parameter is then introduced and expressions are derived for the marginal probability densities for frequencies in white Gaussian noise and a Bayesian approach to general changepoint analysis is given. Numerical integration methods are introduced based on Markov chain Monte Carlo techniques and the Gibbs sampler in particular.
Resumo:
This paper presents an analytical model for the determination of the basic breakdown properties of three-dimensional (3D)-RESURF/CoolMOS/super junction type structures. To account for the two-dimensional (2D) effect of the 3D-RESURF action, 2D models of the electric field distribution are developed. Based on these, expressions are derived for the breakdown voltage as a function of doping concentration and physical dimensions. In addition to cases where the drift regions are fully depleted, the model developed is also applicable to situations involving drift regions which are almost depleted. Accuracy of the analytical approach is verified by comparison with numerical results obtained from the MEDICI device simulator.
Resumo:
In this paper, we derive an EM algorithm for nonlinear state space models. We use it to estimate jointly the neural network weights, the model uncertainty and the noise in the data. In the E-step we apply a forwardbackward Rauch-Tung-Striebel smoother to compute the network weights. For the M-step, we derive expressions to compute the model uncertainty and the measurement noise. We find that the method is intrinsically very powerful, simple and stable.
Resumo:
Previously published expressions for the wear volume in the micro-scale abrasion test for curved specimen surfaces (K.L. Rutherford and I.M. Hutchings, Tribology Letters 2 (1996) 1-11) were based upon erroneous assumptions about the wear-scar geometry. Accurate volumes have now been computed, and the errors in the use of the original analytical equations are shown to be negligibly small (<0.5% error) for all practical cases. © J.C. Baltzer AG, Science Publishers.
Resumo:
A method is presented for predicting the variance of the energy levels in a built-up system to accompany the mean values predicted by SEA. Closed form expressions for the variance are obtained in terms of the standard SEA parameters and an additional set of parameters αk that describe the nature of the power input to each subsystem k, and αks that describe the nature of the coupling between subsystems k and s.
Resumo:
In this paper, an introduction to Bayesian methods in signal processing will be given. The paper starts by considering the important issues of model selection and parameter estimation and derives analytic expressions for the model probabilities of two simple models. The idea of marginal estimation of certain model parameter is then introduced and expressions are derived for the marginal probabilitiy densities for frequencies in white Gaussian noise and a Bayesian approach to general changepoint analysis is given. Numerical integration methods are introduced based on Markov chain Monte Carlo techniques and the Gibbs sampler in particular.
Application of scalar dissipation rate modelling to industrial burners in partially premixed regimes
Resumo:
The objective of this paper is to test various available turbulent burning velocity models on an experimental version of Siemens small scale combustor using the commercial CFD code. Failure of burning velocity model with different expressions for turbulent burning velocity is observed with an unphysical flame flashback into the swirler. Eddy Dissipation Model/Finite Rate Chemistry is found to over-predict mean temperature and species concentrations. Solving for reaction progress equation with its variance using scalar dissipation rate modelling produced reasonably good agreement with the available experimental data. Two different turbulence models Shear Stress Transport (SST) and Scale Adaptive Simulation (SAS) SST are tested and results from transient SST simulations are observed to be predicting well. SAS-SST is found to under-predict with temperature and species distribution.
Resumo:
Computational Fluid Dynamics CFD can be used as a powerful tool supporting engineers throughout the steps of the design. The combination of CFD with response surface methodology can play an important role in such cases. During the conceptual engineering design phase, a quick response is always a matter of urgency. During this phase even a sketch of the geometrical model is rare. Therefore, the utilisation of typical response surface developed for congested and confined environment rather than CFD can be an important tool to help the decision making process, when the geometrical model is not available, provided that similarities can be considered when taking into account the characteristic of the geometry in which the response surface was developed. The present work investigates how three different types of response surfaces behave when predicting overpressure in accidental scenarios based on CFD input. First order, partial second order and complete second order polynomial expressions are investigated. The predicted results are compared with CFD findings for a classical offshore experiment conducted by British Gas on behalf of Mobil and good agreement is observed for higher order response surfaces. The higher order response surface calculations are also compared with CFD calculations for a typical offshore module and good agreement is also observed. © 2011 Elsevier Ltd.
Resumo:
This work is concerned with the characteristics of the impact force produced when two randomly vibrating elastic bodies collide with each other, or when a single randomly vibrating elastic body collides with a stop. The impact condition includes a non-linear spring, which may represent, for example, a Hertzian contact, and in the case of a single body, closed form approximate expressions are derived for the duration and magnitude of the impact force and for the maximum deceleration at the impact point. For the case of two impacting bodies, a set of algebraic equations are derived which can be solved numerically to yield the quantities of interest. The approach is applied to a beam impacting a stop, a plate impacting a stop, and to two impacting beams, and in each case a comparison is made with detailed numerical simulations. Aspects of the statistics of impact velocity are also considered, including the probability that the impact velocity will exceed a specified value within a certain time. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper provides a review of important results concerning the Geometrical Theory of Diffraction and Geometrical Optics. It also reviews the properties of the existing solution for the problem of diffraction of a time harmonic plane wave by a half-plane. New mathematical expressions are derived for the wave fields involved in the problem of diffraction of a time harmonic plane wave by a quarter-plane, including the secondary radiated waves. This leads to a precise representation of the diffraction coefficient describing the diffraction occurring at the corner of the quarter-plane. Our results for the secondary radiated waves are an important step towards finding a formula giving the corner diffraction coefficient everywhere. © 2012 The authors.
Resumo:
Deformations of sandy soils around geotechnical structures generally involve strains in the range small (0·01%) to medium (0·5%). In this strain range the soil exhibits non-linear stress-strain behaviour, which should be incorporated in any deformation analysis. In order to capture the possible variability in the non-linear behaviour of various sands, a database was constructed including the secant shear modulus degradation curves of 454 tests from the literature. By obtaining a unique S-shaped curve of shear modulus degradation, a modified hyperbolic relationship was fitted. The three curve-fitting parameters are: an elastic threshold strain γe, up to which the elastic shear modulus is effectively constant at G0; a reference strain γr, defined as the shear strain at which the secant modulus has reduced to 0·5G0; and a curvature parameter a, which controls the rate of modulus reduction. The two characteristic strains γe and γr were found to vary with sand type (i.e. uniformity coefficient), soil state (i.e. void ratio, relative density) and mean effective stress. The new empirical expression for shear modulus reduction G/G0 is shown to make predictions that are accurate within a factor of 1·13 for one standard deviation of random error, as determined from 3860 data points. The initial elastic shear modulus, G0, should always be measured if possible, but a new empirical relation is shown to provide estimates within a factor of 1·6 for one standard deviation of random error, as determined from 379 tests. The new expressions for non-linear deformation are easy to apply in practice, and should be useful in the analysis of geotechnical structures under static loading.
Resumo:
New measures for estimating the efficiency of transient ventilation flows are proposed. These measures are developed by considering how effectively a ventilation system removes buoyancy from a space. This approach is distinct from standard efficiency measures which are, in general, based on the removal of a neutrally-buoyant passive tracer. Our new measures, based on (active) buoyancy removal, allow both the instantaneous and time-averaged efficiency of the entire space, or of any region within it, to be determined. In addition, expressions for determining vertical profiles of efficiency are proposed. These new measures enable the effectiveness of different flows to be compared directly and are applicable providing density (temperature) differences exist between the interior environment and the replacement air. Thus, they may be used to contrast the effectiveness of a broad range of building ventilation flows including natural, hybrid and forced ventilation.
Resumo:
Essential design criteria for successful drying of granular particles in a conical continuous centrifugal filter are developed in a dimensionless fashion. Four criteria are considered: minimum flow thickness (to ensure sliding bulk flow rather than particulate flow), desaturation position, output dryness and basket failure. The criteria are based on idealised physical models of the machine operation and are written explicitly as functions of the basket size lout, spin velocity Ω and input flow rate of powder Qp. The separation of sucrose crystals from liquid molasses is taken as a case study and the successful regime of potential operating points (lout, Ω) is plotted for a wide range of selected values of flow rate Qp. Analytical expressions are given for minimum and maximum values of the three independent parameters (lout, Ω, Qp) as a function of the slurry and basket properties. The viable operating regime for a conical centrifugal filter is thereby obtained as a function of the slurry and basket properties. © 2012 The Institution of Chemical Engineers.
Resumo:
The effects of turbulent Reynolds number, Ret, on the transport of scalar dissipation rate of reaction progress variable in the context of Reynolds averaged Navier-Stokes simulations have been analyzed using three-dimensional simplified chemistry-based direct numerical simulation (DNS) data of freely propagating turbulent premixed flames with different values of Ret. Scaling arguments have been used to explain the effects of Ret on the turbulent transport, scalar-turbulence interaction, and the combined reaction and molecular dissipation terms. Suitable modifications to the models for these terms have been proposed to account for Ret effects, and the model parameters include explicit Ret dependence. These expressions approach expected asymptotic limits for large values of Ret. However, turbulent Reynolds number Ret does not seem to have any major effects on the modeling of the term arising from density variation. Copyright © Taylor and Francis Group, LLC.
Resumo:
This paper discusses the development of a computationally efficient numerical method for predicting the acoustics of rattle events upfront in the design cycle. The method combines Finite Elements, Boundary Elements and SEA and enables the loudness of a large number of rattle events to be efficiently predicted across a broad frequency range. A low frequency random vibro-acoustic model is used in conjunction with various closed form analytical expressions in order to quickly predict impact probabilities and locations. An existing method has been extended to estimate the statistics of the contact forces across a broad frequency range. Finally, broadband acoustic radiation is predicted using standard low, mid and high frequency vibro-acoustic methods and used to estimate impact loudness. The approach is discussed and a number of validation examples are presented.