949 resultados para Cone opponency
Resumo:
The baryon coupling to its current (λB), in conventional QCD sum rule calculations (QCDSR), is shown to scale as the cubic power of the baryon mass, MB. Some theoretical justification for it comes from a simple light-cone model and also general scaling arguments for QCD. But more importantly, taken as a phenomenological ansatz for the present, this may find very good use in current explorations of possible applications of QCDSR to baryon physics both at temperature T = 0, T ≠ 0 and/or density ρ = 0, ρ ≠ 0. © World Scientific Publishing Company.
Resumo:
Extensive field testes were conducted using the UCD single wheel tester employing three large radial ply tractor tires in two different soils, four different soil conditions, two axle load levels, and three levels of tire inflation pressures in order to quantify the benefits of using low/correct inflation pressures. During these tests slip, net traction, gross traction, and dynamic axle load were recorded. Furthermore, soil moisture content, cone index, and dry bulk density data were obtained at test locations. The results of the analysis showed a significant increase in net traction and traction efficiency when low/correct inflation was used. Benefits of using low/correct pressure was higher in tilled soil conditions.
Resumo:
The superstring is quantized in a manner which manifestly preserves a U(5) subgroup of the (Wick-rotated) ten-dimensional super-Poincaré invariance. This description of the superstring contains critical N = 2 worldsheet superconformal invariance and is a natural covariantization of the U(4)-invariant light-cone Green-Schwarz description. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
A manifestly super-Poincaré covariant formalism for the superstring has recently been constructed using a pure spinor variable. Unlike the covariant Green-Schwarz formalism, this new formalism is easily quantized with a BRST operator and tree-level scattering amplitudes have been evaluated in a manifestly covariant manner. In this paper, the cohomology of the BRST operator in the pure spinor formalism is shown to give the usual light-cone Green-Schwarz spectrum. Although the BRST operator does not directly involve the Virasoro constraint, this constraint emerges after expressing the pure spinor variable in terms of SO(8) variables.
Resumo:
Nonperturbative functions that parametrize off-diagonal hadronic matrix elements of the light-cone leading-twist quark operators are considered. These functions are calculated within the proposed relativistic quark model allowing for the nontrivial structure of the QCD vacuum, special attention being given to gauge invariance. Hadrons are treated as bound states of quarks; strong-interaction quark-pion vertices are described by effective interaction Lagrangians generated by instantons. The parameters of the instanton vacuum, such as the effective radius of the instanton and the quark mass, are related to the vacuum expectation values of the quark-gluon operators of the lowest dimension and to low-energy pion observables. © 2000 MAIK Nauka/Interperiodica.
Resumo:
Studies of the effect of ethanol on human visual evoked potentials are rare and usually involve chronic alcoholic patients. The effect of acute ethanol ingestion has seldom been investigated. We have studied the effect of acute alcoholic poisoning on pattern-reversal visual evoked potentials (PR-VEP) and flash light visual evoked potentials (F-VEP) in 20 normal volunteers. We observed different effects with ethanol: statistically significant prolonged latencies of F-VEP after ingestion, and no significant differences in the latencies of the PR-VEP components. We hypothesize a selective ethanol effect on the afferent transmission of rods, mainly dependent on GABA and glutamatergic neurotransmission, influencing F-VEP latencies, and no effect on cone afferent transmission, as alcohol doesn't influence PR-VEP latencies.
Resumo:
Minimization of a differentiable function subject to box constraints is proposed as a strategy to solve the generalized nonlinear complementarity problem (GNCP) defined on a polyhedral cone. It is not necessary to calculate projections that complicate and sometimes even disable the implementation of algorithms for solving these kinds of problems. Theoretical results that relate stationary points of the function that is minimized to the solutions of the GNCP are presented. Perturbations of the GNCP are also considered, and results are obtained related to the resolution of GNCPs with very general assumptions on the data. These theoretical results show that local methods for box-constrained optimization applied to the associated problem are efficient tools for solving the GNCP. Numerical experiments are presented that encourage the use of this approach.
Resumo:
Using the U(4) formalism developed ten years ago, the worldsheet action for the superstring in Ramond-Ramond plane wave backgrounds is expressed in a manifestly N = (2,2) superconformally invariant manner. This simplifies the construction of consistent Ramond-Ramond plane wave backgrounds and eliminates the problems associated with light-cone interaction point operators. © SISSA/ISAS 2002.
Resumo:
The effect of salts, detergents and chaotropic agents on mass spectrometric analysis are relatively well understood, mainly due to their actions decreasing the performance of ESI interface in mass spectrometric analysis. However, there are few studies in the literature characterizing the effect of protein stabilization by glycerol, followed in some circumstances by the suppression of protein signal when ESI interface is used. The aim of the present research was to investigate in details the mass spectrometric behavior of some proteins in presence of high levels of glycerol during ESI-MS analysis. Thus, horse heart myoglobin and chicken ovalbumin were used as standard proteins. It was demonstrated that the presence of 1% (v/v) glycerol suppressed the signal of these proteins during the ESI-MS analysis, even when the sample nozzle potential was scanned from 28 to 80 V. However, when the glycerol concentration was decreased to 0.5% (v/v) and the sample cone voltage adjusted to 50 V, a perfect envelope of peaks was observed, allowing the spectrum deconvolution and the molecular mass determination with mass accuracy lower than 0.01% in each situation. A molecular explanation for this suppressive effect and for the analytical overcoming of this difficult is proposed.
Resumo:
Although it is not known how to covariantly quantize the Green-Schwarz (GS) superstring, there exists a semi-light-cone gauge choice in which the GS superstring can be quantized in a conformally invariant manner. In this paper, we prove that BRST quantization of the GS superstring in semi-light-cone gauge is equivalent to BRST quantization using the pure spinor formalism for the superstring © SISSA/ISAS 2005.
Resumo:
In the light-cone gauge choice for Abelian and non-Abelian gauge fields, the vector boson propagator carries in it an additional spurious or unphysical pole intrinsic to the choice requiring a careful mathematical treatment. Research in this field over the years has shown us that mathematical consistency only is not enough to guarantee physically meaningful results. Whatever the prescription invoked to handle such an object, it has to preserve causality in the process. On the other hand, the covariantization technique is a well-suited one to tackle gauge-dependent poles in the Feynman integrals, dispensing the use of ad hoc prescriptions. In this work we show that the covariantization technique in the light-cone gauge is a direct consequence of the canonical quantization of the theory. © World Scientific Publishing Company.
Resumo:
The soil mechanical resistance to penetration (PR) has great influence on vegetative development as the root growth and the crop productivity change in inverse proportion. Thus, the objective of this research was to study correlation between the bean grain productivity and the PR in an Oxisol cultivated for four years in no-tillage system at FEIS/UNESP. The attributes PR and yield were determined in a regular grid with 119 sample points. The PR was determined in the layers of 0-0.05, 0.05-0.10, 0.10-0.15, 0.15-0.20 and 0.25-0.30 m. The results were submitted to procedures of descriptive statistics, linear correlation and geostatistic analysis. The linear correlation between the yield and PR was practically null, as in all soil layers investigated it showed determination coefficients (R2) smaller than 0.03 and not significant. The geostatistic analysis showed moderate structure of spatial dependency for PR in the layers of 0.05-0.10 and 0.10-0.15 m, and strong for yield; however, the conjugate spatial analysis of such attributes showed no correlation, therefore, the spatial variability of PR did not influence the yield.
Resumo:
This research studies the influence of the pozzolanic activity of the calcareous and basalt in the resistence behavior of the compressive strength of high performance self-compacting concrete (HPSCC). The selected aditives are the calcareous filler and basalt filler, for they are industrial residues helping that way the sustainable development. The paste of this concrete type is constituted of cement, silica fume, calcareous filler or basalt filler, water and superplasticizer additive. In this research the relationships water/cement are fixed in 0,40 kg/kg, silica fume/cement of 0,10 kg/kg and the relationships filler/cement and superplasticizer/cement are determined through of Marsh́s cone and mini-slump tests. The granular skeleton is gotten from a composition between quartzous sand and brita of basalt that presents the lesser index of emptinesses. The results show that the HPSCC with the addition of calcareous filler has greater compressive strength than what the HPSCC with addition of basalt filler in the ages of 7, 28 and 63 days. It is explained by the fact that the calcareous filler presents greater index of pozzolanic activity than the basalt filler. Besides that the relation water/fine for the HPSCC with calcareous filler is 0,27 l/kg whereas the HPSCC with basalt filler is of 0,29 l/kg.
Resumo:
This paper presents two case histories from Brazil where geophysical and resistivity piezocone tests were carried out to detect contamination. At the first one, the site investigation program was carried out to detect salt-water intrusions in a superficial sedimentary aquifer, at the Paranaguá harbor, in Paraná State. The second case history is a sanitary landfill from Bauru City, São Paulo State. In both sites, superficial geophysical tests were interpreted to detect and delineate the shape of contamination plume, helping to locate the resistivity piezocone tests. It was found that the interpretation of resistivity piezocone tests is straightforward to assess salt-water intrusion in sedimentary sands. For tropical soils, this technique presented some limitations since the groundwater table sometimes is deeper than the layer penetratable to the cone. Moreover, the genesis of those soils affects soil behavior and soil and water sampling is required to support interpretation.
Resumo:
The aim of this study was to evaluate the influence of different light-curing units on the tensile bond strength and microhardness of a composite resin (Filtek Z250 - 3M/ESPE). Conventional halogen (Curing Light 2500 - 3M/ESPE; CL) and two blue light emitting diode curing units (Ultraled - Dabi/Atlante; UL; Ultrablue IS - DMC; UB3 and UB6) were selected for this study. Different light intensities (670, 130, 300, and 600 mW/cm2, respectively) and different curing times (20s, 40s and 60s) were evaluated. Knoop microhardness test was performed in the area corresponding to the fractured region of the specimen. A total of 12 groups (n=10) were established and the specimens were prepared using a stainless steel mold composed by two similar parts that contained a cone-shaped hole with two diameters (8.0 mm and 5.0 mm) and thickness of 1.0 mm. Next, the specimens were loaded in tensile strength until fracture in a universal testing machine at a crosshead speed of 0.5 mm/min and a 50 kg load cell. For the microhardness test, the same matrix was used to fabricate the specimens (12 groups; n=5). Microhardness was determined on the surfaces that were not exposed to the light source, using a Shimadzu HMV-2 Microhardness Tester at a static load of 50 g for 30 seconds. Data were analyzed statistically by two-way ANOVA and Tukey's test (p<0.05). Regarding the individual performance of the light-curing units, there was similarity in tensile strength with 20-s and 40-s exposure times and higher tensile strength when a 60-s light-activation time was used. Regarding microhardness, the halogen lamp had higher results when compared to the LED units. For all light-curing units, the variation of light-exposure time did not affect composite microhardness. However, lower irradiances needed longer light-activation times to produce similar effect as that obtained with high-irradiance light-curing sources.