994 resultados para Commercial Concentration
Resumo:
The objective of this work was to evaluate the translocation of glyphosate in C. bonariensis plants resistant and susceptible to that herbicide. The 14C-glyphosate was mixed with commercial gyhphosate (800 g ha-1) and applied on the center of the adaxial face of a third node leaf, using a micro syringe, and adding 10 µL of a solution with specific activity of 1,400 Bq, 45 days after plant emergence. The concentration of the glyphosate translocated in the plant was evaluated at time intervals of 6, 12, 36 and 72 hours after being applied on the application leaf, stem, roots and leaves. Ten hours after treatment application, the distribution of the product in the application leaf, divided into base, center and apex, was also evaluated by measuring the radiation emitted by 14C-glyphosate in a liquid scintillation spectrometer. Greater glyphosate retention was observed in the resistant biotype leaf, approximately 90% of the total absorbed up to 72 hours. In the susceptible biotype, this value was close to 70% in the same period. Susceptible biotype leaves, stem and roots showed greater concentration of glyphosate, indicating greater translocation efficiency in this biotype. In the resistant biotype, the herbicide accumulated in greater quantity at the apex and center of the application leaf, while in the susceptible biotype greater accumulation was observed at the base and center leaf. Thus, it can be stated that the resistance mechanism is related to the differential translocation of this herbicide in the biotypes.
Resumo:
Network externalities and two-sided markets in the context of web services and value creation is not very well discussed topic in academic literature. The explosive rise of the Internet users has created a strong base for many successful web services and pushed many firms towards e-business and online service based business models. Thus the subject of this thesis, the role of network externalities in value creating process of the commer-cial web service for two-sided international markets is very current and interesting topic to examine. The objective of this Master’s Thesis is to advance the study of network externalities from the viewpoint of two-sided markets and network effects as well as describe the value creation & value co-creation process in commercial web service business models. The main proposition suggests that the larger network of customers and the bigger number of users the web service is able to attract, the more value and stronger positive net-work externalities the service is able to create for each customer group. The empirical research of this study was implemented for commercial web service, targeted to Russian consumers and Finnish business users. The findings suggest that the size of the network is highly related to the experi-enced value of the customers and the whole value creation process of commercial web targeted for two-sided international markets varies from the value creation for one-sided or pure domestic markets.
Resumo:
The objective of this study was to evaluate the effect of the ethanolic extract of Serjania lethalis leaves and stems on the diaspore germination and seedling growth of wild poinsettia (Euphorbia heterophylla) and barnyardgrass (Echinochloa crus-galli). The crude ethanolic extract was prepared from 100 g of dry plant material dissolved in 500 ml of ethanol. The extracts were solubilized in a buffer solution containing dimethyl sulfoxide (DMSO) at concentrations of 10.0, 7.5, 5.0 and 2.5 mg mL-1. The effect of these extracts was compared with herbicide oxyfluorfen in bioassays. The ethanolic extracts of S. lethalis leaves and stems inhibited the germination and seedling growth of barnyardgrass and wild poinsettia in a concentration-dependent manner. The reduction in the root length of E. heterophylla seedlings might be attributed to the reduced elongation of metaxylem cells. The phytotoxicity of the extracts ranged according to the receptor species, and for some variables, the inhibitory effect was similar, and even superior, to that of the commercial herbicide. Thus, S. lethalis extracts might be a promising alternative for sustainable weed management.
Resumo:
Asymmetric synthesis using modified heterogeneous catalysts has gained lots of interest in the production of optically pure chemicals, such as pharmaceuticals, nutraceuticals, fragrances and agrochemicals. Heterogeneous modified catalysts capable of inducing high enantioselectivities are preferred in industrial scale due to their superior separation and handling properties. The topic has been intensively investigated both in industry and academia. The enantioselective hydrogenation of ethyl benzoylformate (EBF) to (R)-ethyl mandelate over (-)-cinchonidine (CD)-modified Pt/Al2O3 catalyst in a laboratory-scale semi-batch reactor was studied as a function of modifier concentration, reaction temperature, stirring rate and catalyst particle size. The main product was always (R)-ethyl mandelate while small amounts of (S)-ethyl mandelate were obtained as by product. The kinetic results showed higher enantioselectivity and lower initial rates approaching asymptotically to a constant value as the amount of modifier was increased. Additionally, catalyst deactivation due to presence of impurities in the feed was prominent in some cases; therefore activated carbon was used as a cleaning agent of the raw material to remove impurities prior to catalyst addition. Detailed characterizations methods (SEM, EDX, TPR, BET, chemisorption, particle size distribution) of the catalysts were carried out. Solvent effects were also studied in the semi-batch reactor. Solvents with dielectric constant (e) between 2 and 25 were applied. The enantiomeric excess (ee) increased with an increase of the dielectric coefficient up to a maximum followed by a nonlinear decrease. A kinetic model was proposed for the enantioselectivity dependence on the dielectric constant based on the Kirkwood treatment. The non-linear dependence of ee on (e) successfully described the variation of ee in different solvents. Systematic kinetic experiments were carried out in the semi-batch reactor. Toluene was used as a solvent. Based on these results, a kinetic model based on the assumption of different number of sites was developed. Density functional theory calculations were applied to study the energetics of the EBF adsorption on pure Pt(1 1 1). The hydrogenation rate constants were determined along with the adsorption parameters by non-linear regression analysis. A comparison between the model and the experimental data revealed a very good correspondence. Transient experiments in a fixed-bed reactor were also carried out in this work. The results demonstrated that continuous enantioselective hydrogenation of EBF in hexane/2-propanol 90/10 (v/v) is possible and that continuous feeding of (-)-cinchonidine is needed to maintain a high steady-state enantioselectivity. The catalyst showed a good stability and high enantioselectivity was achieved in the fixed-bed reactor. Chromatographic separation of (R)- and (S)-ethyl mandelate originating from the continuous reactor was investigated. A commercial column filled with a chiral resin was chosen as a perspective preparative-scale adsorbent. Since the adsorption equilibrium isotherms were linear within the entire investigated range of concentrations, they were determined by pulse experiments for the isomers present in a post-reaction mixture. Breakthrough curves were measured and described successfully by the dispersive plug flow model with a linear driving force approximation. The focus of this research project was the development of a new integrated production concept of optically active chemicals by combining heterogeneous catalysis and chromatographic separation technology. The proposed work is fundamental research in advanced process technology aiming to improve efficiency and enable clean and environmentally benign production of enantiomeric pure chemicals.
Resumo:
Valuable minerals can be recovered by using froth flotation. This is a widely used separation technique in mineral processing. In a flotation cell hydrophobic particles attach on air bubbles dispersed in the slurry and rise on the top of the cell. Valuable particles are made hydrophobic by adding collector chemicals in the slurry. With the help of a frother reagent a stable froth forms on the top of the cell and the froth with valuable minerals, i.e. the concentrate, can be removed for further processing. Normally the collector is dosed on the basis of the feed rate of the flotation circuit and the head grade of the valuable metal. However, also the mineral composition of the ore affects the consumption of the collector, i.e. how much is adsorbed on the mineral surfaces. Therefore it is worth monitoring the residual collector concentration in the flotation tailings. Excess usage of collector causes unnecessary costs and may even disturb the process. In the literature part of the Master’s thesis the basics of flotation process and collector chemicals are introduced. Capillary electrophoresis (CE), an analytical technique suitable for detecting collector chemicals, is also reviewed. In the experimental part of the thesis the development of an on-line CE method for monitoring the concentration of collector chemicals in a flotation process and the results of a measurement campaign are presented. It was possible to determine the quality and quantity of collector chemicals in nickel flotation tailings at a concentrator plant with the developed on-line CE method. Sodium ethyl xanthate and sodium isopropyl xanthate residuals were found in the tailings and slight correlation between the measured concentrations and the dosage amounts could be seen.
Resumo:
The intensive use of pesticides have contaminated the soil and groundwater. The application of herbicides as controlled release formulations may reduce the environmental damage related to their use because it may optimize the efficiency of the active ingredient and reducing thus the recommended dose. The objective of this study was to evaluate the persistence of the herbicide atrazine applied as commercial formulation (COM) and as controlled release formulation (xerogel - XER) in Oxisol. The experimental design used was split-plot randomized-blocks with four replications, in a (2 x 6) + 1 arrangement. The two formulations (COM and XER) were assigned to main plots and different atrazine concentrations (0, 3.200, 3.600, 4.200, 5.400 and 8.000 g atrazine ha-1) were assigned to sub-plots. Persistence was determined by means of dissipation kinetics and bioavailability tests. The methodology of bioassays to assess the atrazine availability is efficient and enables to distinguish the tested formulations. The availability of atrazine XER is higher than the commercial in two different periods: up to 5 days after herbicide application and at the 35th day after application. The XER formulation tends to be more persistent in relation to COM formulation.
Resumo:
Cyanobacteria are a very important group in aquatic systems, particularly in eutrophic waters. Therefore studies about their success in the environment are essential. Many hypotheses have tried to explain the dominance of Cyanobacteria, and several emphasized the importance of various nitrogen sources for the success of the group. In this study, we measured the effect of ammonium and nitrate on the growth and protein concentration of Microcystis viridis (Cyanobacteria). This species is well-known because bloom formation in eutrophic waters. The study was carried out, in experimental batch cultures, using the WC medium with different nitrogen sources: ammonium, nitrate, ammonium + nitrate (50% ammonium + 50% nitrate) and ammonium at different concentrations (to test for possible NH4+ toxicity). Protein, ammonium and nitrate concentrations were measured at end of each experiment, whereas samples for cell counts were taken daily. Results showed that Microcystis viridis grew faster with ammonium (µ = 0.393 day-1) than with nitrate (µ = 0.263 day-1) and ammonium + nitrate (µ = 0.325 day-1). This pattern is explained by the metabolism of ammonium that presents higher uptake and assimilation rates than nitrate. Maximum cell concentration, however, was higher in the ammonium + nitrate treatment, followed by nitrate treatment. Higher protein concentration were observed in the treatment with nitrate. In the ammonium toxicity test, no difference between the control and NH4+ at 50% was found. Thus, the ammonium concentrations used in these experiments were not toxic. Our results suggest that Cyanobacteria is able to grow on both nitrogen sources even if ammonium may allow faster growth and bloom development.
Resumo:
As the rapid development of the society as well as the lifestyle, the generation of commercial waste is getting more complicated to control. The situation of packaging waste and food waste – the main fractions of commercial waste in different countries in Europe and Asia is analyzed in order to evaluate and suggest necessary improvements for the existing waste management system in the city of Hanoi, Vietnam. From all waste generation sources of the city, a total amount of approximately 4000 tons of mixed waste is transported to the composting facility and the disposal site, which emits a huge amount of 1,6Mt of GHG emission to the environment. Recycling activity is taking place spontaneously by the informal pickers, leads to the difficulty in managing the whole system and uncertainty of the overall data. With a relative calculation, resulting in only approximately 0,17Mt CO2 equivalent emission, incinerator is suggested to be the solution of the problem with overloaded landfill and raising energy demand within the inhabitants.
Resumo:
The steel industry produces, besides steel, also solid mineral by-products or slags, while it emits large quantities of carbon dioxide (CO2). Slags consist of various silicates and oxides which are formed in chemical reactions between the iron ore and the fluxing agents during the high temperature processing at the steel plant. Currently, these materials are recycled in the ironmaking processes, used as aggregates in construction, or landfilled as waste. The utilization rate of the steel slags can be increased by selectively extracting components from the mineral matrix. As an example, aqueous solutions of ammonium salts such as ammonium acetate, chloride and nitrate extract calcium quite selectively already at ambient temperature and pressure conditions. After the residual solids have been separated from the solution, calcium carbonate can be precipitated by feeding a CO2 flow through the solution. Precipitated calcium carbonate (PCC) is used in different applications as a filler material. Its largest consumer is the papermaking industry, which utilizes PCC because it enhances the optical properties of paper at a relatively low cost. Traditionally, PCC is manufactured from limestone, which is first calcined to calcium oxide, then slaked with water to calcium hydroxide and finally carbonated to PCC. This process emits large amounts of CO2, mainly because of the energy-intensive calcination step. This thesis presents research work on the scale-up of the above-mentioned ammonium salt based calcium extraction and carbonation method, named Slag2PCC. Extending the scope of the earlier studies, it is now shown that the parameters which mainly affect the calcium utilization efficiency are the solid-to-liquid ratio of steel slag and the ammonium salt solvent solution during extraction, the mean diameter of the slag particles, and the slag composition, especially the fractions of total calcium, silicon, vanadium and iron as well as the fraction of free calcium oxide. Regarding extraction kinetics, slag particle size, solid-to-liquid ratio and molar concentration of the solvent solution have the largest effect on the reaction rate. Solvent solution concentrations above 1 mol/L NH4Cl cause leaching of other elements besides calcium. Some of these such as iron and manganese result in solution coloring, which can be disadvantageous for the quality of the PCC product. Based on chemical composition analysis of the produced PCC samples, however, the product quality is mainly similar as in commercial products. Increasing the novelty of the work, other important parameters related to assessment of the PCC quality, such as particle size distribution and crystal morphology are studied as well. As in traditional PCC precipitation process, the ratio of calcium and carbonate ions controls the particle shape; a higher value for [Ca2+]/[CO32-] prefers precipitation of calcite polymorph, while vaterite forms when carbon species are present in excess. The third main polymorph, aragonite, is only formed at elevated temperatures, above 40-50 °C. In general, longer precipitation times cause transformation of vaterite to calcite or aragonite, but also result in particle agglomeration. The chemical equilibrium of ammonium and calcium ions and dissolved ammonia controlling the solution pH affects the particle sizes, too. Initial pH of 12-13 during the carbonation favors nonagglomerated particles with a diameter of 1 μm and smaller, while pH values of 9-10 generate more agglomerates of 10-20 μm. As a part of the research work, these findings are implemented in demonstrationscale experimental process setups. For the first time, the Slag2PCC technology is tested in scale of ~70 liters instead of laboratory scale only. Additionally, design of a setup of several hundreds of liters is discussed. For these purposes various process units such as inclined settlers and filters for solids separation, pumps and stirrers for material transfer and mixing as well as gas feeding equipment are dimensioned and developed. Overall emissions reduction of the current industrial processes and good product quality as the main targets, based on the performed partial life cycle assessment (LCA), it is most beneficial to utilize low concentration ammonium salt solutions for the Slag2PCC process. In this manner the post-treatment of the products does not require extensive use of washing and drying equipment, otherwise increasing the CO2 emissions of the process. The low solvent concentration Slag2PCC process causes negative CO2 emissions; thus, it can be seen as a carbon capture and utilization (CCU) method, which actually reduces the anthropogenic CO2 emissions compared to the alternative of not using the technology. Even if the amount of steel slag is too small for any substantial mitigation of global warming, the process can have both financial and environmental significance for individual steel manufacturers as a means to reduce the amounts of emitted CO2 and landfilled steel slag. Alternatively, it is possible to introduce the carbon dioxide directly into the mixture of steel slag and ammonium salt solution. The process would generate a 60-75% pure calcium carbonate mixture, the remaining 25-40% consisting of the residual steel slag. This calcium-rich material could be re-used in ironmaking as a fluxing agent instead of natural limestone. Even though this process option would require less process equipment compared to the Slag2PCC process, it still needs further studies regarding the practical usefulness of the products. Nevertheless, compared to several other CO2 emission reduction methods studied around the world, the within this thesis developed and studied processes have the advantage of existing markets for the produced materials, thus giving also a financial incentive for applying the technology in practice.
Resumo:
Paper-based analytical technologies enable quantitative and rapid analysis of analytes from various application areas including healthcare, environmental monitoring and food safety. Because paper is a planar, flexible and light weight substrate, the devices can be transported and disposed easily. Diagnostic devices are especially valuable in resourcelimited environments where diagnosis as well as monitoring of therapy can be made even without electricity by using e.g. colorimetric assays. On the other hand, platforms including printed electrodes can be coupled with hand-held readers. They enable electrochemical detection with improved reliability, sensitivity and selectivity compared with colorimetric assays. In this thesis, different roll-to-roll compatible printing technologies were utilized for the fabrication of low-cost paper-based sensor platforms. The platforms intended for colorimetric assays and microfluidics were fabricated by patterning the paper substrates with hydrophobic vinyl substituted polydimethylsiloxane (PDMS) -based ink. Depending on the barrier properties of the substrate, the ink either penetrates into the paper structure creating e.g. microfluidic channel structures or remains on the surface creating a 2D analog of a microplate. The printed PDMS can be cured by a roll-ro-roll compatible infrared (IR) sintering method. The performance of these platforms was studied by printing glucose oxidase-based ink on the PDMS-free reaction areas. The subsequent application of the glucose analyte changed the colour of the white reaction area to purple with the colour density and intensity depending on the concentration of the glucose solution. Printed electrochemical cell platforms were fabricated on paper substrates with appropriate barrier properties by inkjet-printing metal nanoparticle based inks and by IR sintering them into conducting electrodes. Printed PDMS arrays were used for directing the liquid analyte onto the predetermined spots on the electrodes. Various electrochemical measurements were carried out both with the bare electrodes and electrodes functionalized with e.g. self assembled monolayers. Electrochemical glucose sensor was selected as a proof-of-concept device to demonstrate the potential of the printed electronic platforms.
Resumo:
The aim of the present study was to evaluate the effect of first morning urinary volume (collected on three different non-consecutive days), fasting blood glucose (determined on the first and third days of urine collection), and glycosylated hemoglobin (determined on the first and third days of urine collection) on the albumin concentration in first morning urine samples collected on three different days. We found 3.6% asymptomatic bacteriuria in the urine samples; therefore, every urine sample must be tested to exclude infection. One hundred and fifty urine samples were provided by 50 IDDM patients aged 21.9 ± 7 (12-38) years with a disease duration of 6.8 ± 5.8 (0.4-31) years attending the Diabetes Clinic at the State University Hospital of Rio de Janeiro. There were no differences in albumin concentration (6.1 vs 5.8 vs 6.2 µg/ml; P = NS) or urinary volume (222.5 vs 210 vs 200 ml) between the three samples. In addition, there were no differences in fasting blood glucose (181.9 ± 93.6 vs 194.6 ± 104.7 mg%; P = NS) or glycosylated hemoglobin (HbA1)(8.4 ± 1.3 vs 8.8 ± 1.5%; P = NS) between the first and third blood samples. Six patients (group 1) had a mean urinary albumin concentration of more than 20 µg/ml for the three urine samples. This group was compared with the 44 patients (group 2) with a mean urinary albumin concentration for the three urine samples of less than 20 µg/ml. No difference was found between groups 1 and 2 in relation to fasting blood glucose (207.1 ± 71.7 vs 187.6 ± 84.6 mg/dl), HbA1 (8.1 ± 0.9 vs 8.6 ± 1.1%) or urinary volume [202 (48.3-435) vs 246 (77.3-683.3) ml]. Stepwise multiple regression analysis with albumin concentration of first morning urine samples as the dependent variable, and urinary volume, fasting blood glucose and glycosylated hemoglobin as independent variables, showed that only 12% (P = 0.01) of the albumin concentration could be accounted for by the independent effect of morning urine volume on the first day of urine collection. No urine samples showed a change in the cutoff level of 20 µg/ml of albumin concentration as the result of volume. Fasting blood glucose and glycosylated hemoglobin did not influence the urinary albumin concentration. Considerable variability in urinary albumin concentration was found in the three morning urine samples with a mean intraindividual coefficient variation of 56%. In conclusion, in the present study, urinary volume had a minimal, though not constant, effect on first morning urinary albumin concentration. Day-to-day metabolic and clinical control of IDDM patients, except probably for ketoacidosis, should not contraindicate microalbuminuria screening in first morning urine samples
Resumo:
Three horse-derived antivenoms were tested for their ability to neutralize lethal, hemorrhagic, edema-forming, defibrinating and myotoxic activities induced by the venom of Bothrops atrox from Antioquia and Chocó (Colombia). The following antivenoms were used: a) polyvalent (crotaline) antivenom produced by Instituto Clodomiro Picado (Costa Rica), b) monovalent antibothropic antivenom produced by Instituto Nacional de Salud-INS (Bogotá), and c) a new monovalent anti-B. atrox antivenom produced with the venom of B. atrox from Antioquia and Chocó. The three antivenoms neutralized all toxic activities tested albeit with different potencies. The new monovalent anti-B. atrox antivenom showed the highest neutralizing ability against edema-forming and defibrinating effects of B. atrox venom (41 ± 2 and 100 ± 32 µl antivenom/mg venom, respectively), suggesting that it should be useful in the treatment of B. atrox envenomation in Antioquia and Chocó
Resumo:
Red blood cells (RBC) are viable if kept in an adequate preservative solution, although gradual changes in morphology and metabolism may occur. There is a gradual decrease in adenosine-5'-triphosphate (ATP) concentration, pH, glucose consumption, and enzyme activity during preservation. The normal discocyte shapes are initially replaced by echinocytes and stomatocytes and, at final stages, by spherocytes, the last step before splenic sequestration. Post-transfusional survival has been correlated with the ATP concentration. RBC preserved in ADSOL, a solution containing adenine, dextrose, sodium chloride, and mannitol, are viable for transfusion for up to 6 weeks. Erythrocytes from 10 blood units taken from healthy adult donors were preserved for 12 weeks in ADSOL at 4oC. We now report a significant correlation (r2 = 0.98) between the percentage of discocytes (89 to 7%) and ATP (100 to 10%) concentration in ADSOL-preserved RBC. The results suggest that the percent of discocyte shapes used as an indicator of ATP concentration may be a useful indicator for quality control of RBC viability in centers which have limited assay facilities.
Resumo:
The effect of the consumption of ethanol (5%) on retinol concentration in milk was studied in the rat on day 12 after delivery, together with the evolution of dam body weight and pup growth rate. Female Wistar rats receiving alcohol (5%) in drinking water during lactation (N = 7) were compared to normal controls fed ad libitum (N = 6). The mean maternal alcohol intake was 3.96 ± 0.23 g/kg body weight per day. To determine retinol levels in milk we used the Bessey and Lowry method, modified by Araújo and Flores ((1978) Clinical Chemistry, 24: 386-392). The pups were separated from dams for a 2-4-h period, after which the dams were injected intraperitoneally with anesthetic and oxytocin. The concentration of retinol in milk was 162.88 ± 10.60 µg/dl in the control group and 60.02 ± 8.22 µg/dl in the ethanol group (P<0.05). The ethanol group consumed less food than the controls and lost a significant amount of weight during lactation. On days 8, 10 and 12, the body weight of the pups from rats given ethanol (13.46 ± 0.43, 16.12 ± 0.48 and 18.60 ± 0.91 g, respectively) were significantly lower (P<0.05) than the weight of pups from controls (15.2 ± 0.44, 18.36 ± 0.54, 20.77 ± 0.81 g). These data show that ethanol intake during the suckling period, even at low concentrations, decreases the amount of retinol in milk and, therefore, the amount available to the pups.
Resumo:
Distillation is a unit operation of process industry, which is used to separate a liquid mixture into two or more products and to concentrate liquid mixtures. A drawback of the distillation is its high energy consumption. An increase in energy and raw material prices has led to seeking ways to improve the energy efficiency of distillation. In this Master's Thesis, these ways are studied in connection with the concentration of hydrogen peroxide at the Solvay Voikkaa Plant. The aim of this thesis is to improve the energy efficiency of the concentration of the Voikkaa Plant. The work includes a review of hydrogen peroxide and its manufacturing. In addition, the fundamentals of distillation and its energy efficiency are reviewed. An energy analysis of the concentration unit of Solvay Voikkaa Plant is presented in the process development study part. It consists of the current and past information of energy and utility consumptions, balances, and costs. After that, the potential ways to improve the energy efficiency of the distillation unit at the factory are considered and their feasibility is evaluated technically and economically. Finally, proposals to improve the energy efficiency are suggested. Advanced process control, heat integration and energy efficient equipment are the most potential ways to carry out the energy efficient improvements of the concentration at the Solvay Voikkaa factory. Optimization of the reflux flow and the temperatures of the overhead condensers can offer immediate savings in the energy and utility costs without investments. Replacing the steam ejector system with a vacuum pump would result in savings of tens of thousands of euros per year. The heat pump solutions, such as utilizing a mechanical vapor recompression or thermal vapor recompression, are not feasible due to the high investment costs and long pay back times.