942 resultados para Citrus sinensis
Resumo:
Nobiletin (NOB) and tangeretin (TAN), two of the main polymethoxylated flavones (PMFs) in citrus, influence a number of key biological pathways in mammalian cells. Although the impacts of NOB and TAN on glucose homeostasis and cholesterol regulation have been investigated in human clinical trials, much information is still lacking about the metabolism and oral bioavailability of these compounds in animals. In this study, NOB and TAN were administered to rats by gavage and intraperitoneal (ip) injection, and the blood serum concentrations of these compounds and their main metabolites were monitored by high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS). In addition to the administered compounds, two metabolites of TAN and eight metabolites of NOB were detected and measured over 24 h. With identical oral doses, nearly 10-fold higher absorption of NOB occurred compared to TAN. For both compounds, maximum levels of glucuronidated metabolites occurred in the blood serum at later time points (similar to 5-8 h) compared to the earlier T(max) a values for NOB and TAN. In most cases the glucuronides occurred at substantially higher concentrations than the aglycone metabolites. Low levels of NOB and TAN and their metabolites were detectable in rat blood serum even at 24 h after treatment.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The synthesis of polygalacturonases (PG) is known to be influenced by Aspergillus growth conditions, namely, environmental factors and pectin content in the cultivation medium containing a mixed carbon source. Optimal conditions were attained at a temperature of 30 A degrees C and an initial pH of 4.5. PG activity (3.29 and 2.48 U/mL) was determined after a two-day culture of Aspergillus sp. HC1 and Aspergillus sp. CC1, respectively, in a basic medium containing 2% citrus pectin as the sole carbon source. The addition of glucose (2% w/v) to the basic medium led to a 2-fold increase in PG production. However, enzyme synthesis was repressed when a higher concentration of glucose was used in the medium containing the mixed carbon source. Spores from the two fungi were immobilized in a 3% Ca-alginate system and the mechanical strength of the gel beads allowed the use of this process system 6-fold longer (288 h) than the free culture. In the Aspergillus sp. CC1 immobilized system, PG production increased nearly 10-fold in the medium with 2% glucose added (5.95 U/mL) in comparison to the medium without sugar (0.55 U/mL). The results demonstrate that a different response in activity was produced by free and entrapped spore systems. PG production remained approximately constant throughout the six 48 h cycles in the medium containing citrus pectin (2% w/v) as the sole carbon source.
Resumo:
Xylella fastidiosa is an important pathogen bacterium transmitted by xylem-feedings leafhoppers that colonizes the xylem of plants and causes diseases on several important crops including citrus variegated chlorosis (CVC) in orange and lime trees. Glutathione-S-transferases (GST) form a group of multifunctional isoenzymes that catalyzes both glutathione (GSH)-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GSTs are the major detoxification enzymes found in the intracellular space and mainly in the cytosol from prokaryotes to mammals, and may be involved in the regulation of stress-activated signals by suppressing apoptosis signal-regulating kinase 1. In this study, we describe the cloning of the glutathione-S-transferase from X. fastidiosa into pET-28a(+) vector, its expression in Escherichia coli, purification and initial structural characterization. The purification of recombinant xfGST (rxfGST) to near homogeneity was achieved using affinity chromatography and size-exclusion chromatography (SEC). SEC demonstrated that rxfGST is a homodimer in solution. The secondary and tertiary structures of recombinant protein were analyzed by circular dichroism and fluorescence spectroscopy, respectively. The enzyme was assayed for activity and the results taken together indicated that rxfGST is a stable molecule, correctly folded, and highly active. Several members of the GST family have been extensively studied. However, xfGST is part of a less-studied subfamily which yet has not been structurally and biochemically characterized. In addition, these studies should provide a useful basis for future studies and biotechnological approaches of rxfGST. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Gummosis is among the main fungal diseases of the citrus. It is caused by Phytophthora sp. and usually shows up in the lap of the plant, provoking rottenness and gum exudation, and expands causing the plant death for constrictions in the cambium or phloem which interrupts the descending flow of sap. The objective of this work was to evaluate the antagonistic in vitro activity of Trichoderma spp. to the fungi Phytophthora citrophthora. Phytophthora citrophthora was exposed to five environments of antagonism (without antagonist and with four strains of Trichoderma viride, T. virens, T. harzianu and T stromaticum), The in vitro essay was accomplished through the method of paired cultures. A completely randomized desing was used with five treatments and three replications, and each plot was represented by three petri dishes. The isolates of Trichoderma demonstrated significant effect in the inhibition of the mycelial growth of the fungi Phytophthora citrophthora, and the fungi Trichoderma stromaticum presented larger antagonism to the fungi P. citrophthora while the T harzianum presented antagonism smaller.
Resumo:
Wilcken, S.R.S., E.S. Mori, M. Bacci, L.C.C.B. Ferraz, C.M.G. Oliveira & M.M. Inomoto. 2008. Relationships among Pratylenchus jaehni and P. coffeae populations from Brazil. The relationships among Pratylenchus jaehni (C) and six amphimitic Pratylenchus populations from Brazil (three from banana, PcB1, PcB2, and PcB3; one from Aglaonema sp., M2; one from coffee, K5; and one from citrus, C) were studied through morphological and molecular analysis, and pathogenicity test. The analysis of morphometric characteristics of PcB1, M2, C2 and K5, compared with P. jaehni and P. coffeae (K6) data obtained from literature, delineated three groups: P. coffeae (K6), PcB1 and M2; P. jaehni (C1) and C2; and K5. RAPD analysis of PcB1, PcB2, PcB3, M2, C2, K5 and P.jaehni (C1) demonstrated that these populations form three distinct genetic groups: PcB1, PcB2, PcB3 and M2; P.jaehni and C2; and K5. In pathogenicity test, K5 reproduced well on coffee and caused extensive root necrosis, but C2 did not. Population C2 reproduced well on Rangpur lime, which was previously rated as poor host to K5. Therefore, the results demonstrated that C2 is P. jaehni, K5 is an undescribed species of Pratylenchus, and PcB1, PcB2 and PcB3 are P. coffeae. The taxonomic status of M2 remains inconclusive.
Resumo:
Citrus blackfly, Aleurocanthus woglumi Ashby, is a serious pest of citrus culture and other economically important fruit crops. It is a present quarantine pest or A2 maximum alert restricting trades with other regions free of its presence. Since the frst occurrence of the citrus blackfly in Belem in 2001 its dissemination was quickly to other States and regions of citrus production in Brazil. As an exotic pest, basic knowledge is scarce in order to establish the appropriate management to the insect in Brazil. Thus, the aim of the present study was to provide information about important aspects of A. woglumi, such as: history and geographical distribution, bioecology, host plants, appropriate control methods, among others, in order to provide subsidies for futures researches about the citrus blackfly in Brazil.
Resumo:
Late-season grapefruits (Citrus paradisi Macf. cv. Marsh seedless) were dipped in water at 50°C for 3 min with and without 200 ppm imazalil (IMZ) or 1000 ppm IMZ at 19°C and were subsequently stored at 7°C and 90-95% relative humidity (RH) for 11 weeks plus one week at 21°C and approximately 75% RH to simulate a marketing period (SMP). Residue concentrations in fruit after treatment with 200 ppm IMZ at 50°C were 3.46 ppm, about twice the level (1.80 ppm) found in fruit treated with 1000 ppm IMZ at 19°C. Fungicide degradation rates during storage showed similar patterns resulting in an approximately 50% decrease. Both fungicide treatments significantly reduced decay and chilling injury (CI) during storage and SMP. Hot water reduced CI and decay but not as effectively as the IMZ treatments. Soluble solids concentrations were not affected by treatments, IMZ treatments resulted in significantly lower values of titratable acidity and higher concentrations of ethanol in the juice after SMP. Weight loss was significantly higher in fruit dipped in water at 50°C after SMP. No visible damage occurred to the fruit as a result of any of the treatments.
Resumo:
GA3 was tested in sweet oranges 'Pera' and 'Hamlin' for delay the picking time without loosening of fruit quality for processing. Hamlin is the firths cv processed in Brazil and Pera is a mid season cv and extending their period of processing is important. Two experiments were made at the Citrus Experimental Station during 1996 season. The treatments are 5 ppm of GA 3 + 0,05% Silwett L-77® (organosilicone), 10 ppm of GA 3 + 0,05% of Silwet L-77®, 20 ppm of GA3 + 0,1% Herbitensil® (Noniphenoloxietilate 40%m/v + isopropilic alcohol 15% m/v) and control, repeated 7 times for Hamlin and 8 times for Pera, with one tree each parcel. The treatments were applied in May 1996, at the stage of greenish yellow colour of the fruits. Evaluations were made each 20 days interval till the final picking, It was analysed fruit quality and retention force for picking and puncture resistance. The results showed no differences for fruit quality of Hamlin from July to mid September and for Pera till September. After some differences occurred. The GA3 treatments were effectives in maintain the fruit retention force for both cvs for 120 days after application. In relation to fruit puncture resistance the treatments with GA3 differed of the control for both cvs, accordingly with the doses and mixtures. The colour index was better maintained with 5ppm of GA3 plus 0,05% of Silwet L-77®. The total fruit production did not differ for both cultivars.