982 resultados para Charleston Region (S.C.)--Maps, Manuscript--Early works to 1800.
Resumo:
Title varies.
Resumo:
Each volume contains a list of subscribers, together with their coats of arms.
Resumo:
Includes "Constitutional law : comprising the Declaration of Independence, the Articles of Confederation, the Constitution of the United States and the constitutions of the several states composing the Union": 139 p. at end.
Resumo:
Title page inserted.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
A deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT; EC 2.4.2.8) is associated with a spectrum of disease that ranges from gouty arthritis (OMIM 300323) to the more severe Lesch-Nyhan syndrome (OMIM 300322). To date, all cases of HPRT deficiency have shown a mutation within the HPRT cDNA. In the present study of an individual with gout due to HPRT deficiency, we found a normal HPRT cDNA sequence. This is the first study to provide an example of HPRT deficiency which appears to be due to a defect in the regulation of the gene. © 2005 Elsevier Inc. All rights reserved.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Poor maternal nutrition during pregnancy can alter postnatal phenotype and increase susceptibility to adult cardiovascular and metabolic diseases. However, underlying mechanisms are largely unknown. Here, we show that maternal low protein diet (LPD), fed exclusively during mouse preimplantation development, leads to offspring with increased weight from birth, sustained hypertension, and abnormal anxiety-related behavior, especially in females. These adverse outcomes were interrelated with increased perinatal weight being predictive of later adult overweight and hypertension. Embryo transfer experiments revealed that the increase in perinatal weight was induced within blastocysts responding to preimplantation LPD, independent of subsequent maternal environment during later pregnancy. We further identified the embryo-derived visceral yolk sac endoderm (VYSE) as one mediator of this response. VYSE contributes to fetal growth through endocytosis of maternal proteins, mainly via the multiligand megalin (LRP2) receptor and supply of liberated amino acids. Thus, LPD maintained throughout gestation stimulated VYSE nutrient transport capacity and megalin expression in late pregnancy, with enhanced megalin expression evident even when LPD was limited to the preimplantation period. Our results demonstrate that in a nutrient-restricted environment, the preimplantation embryo activates physiological mechanisms of developmental plasticity to stablize conceptus growth and enhance postnatal fitness. However, activation of such responses may also lead to adult excess growth and cardiovascular and behavioral diseases. © 2008 by the Society for the Study of Reproduction, Inc.
Resumo:
The classical concept of estrogen receptor (ER) activation is that steroid passes the cell membrane, binds to its specific protein receptor in the cell's cytoplasm and the steroid-receptor complex travels to the nucleus where it activates responsive genes. This basic idea has been challenged by results of experiments demonstrating insulin-like growth factor 1 (IGF-1) activation of the ER in the complete absence of estrogen suggesting at least one other mechanism of ER activation not involving steroid. One explanation is that activation of the cell surface IGF-1 receptor leads to synthesis of an intracellular protein(s) able to bind to and stimulate the ER. Based on results using the two-hybrid system, coimmunoprecipitation and transfection-luciferase assays, we herein show that one of these proteins could well be receptor for activated C kinase 1 (RACK-1). Using the human ER type α (ER-α) as bait, a cloned complementary deoxyribonucleic acid (cDNA) library from IGF-1 treated human breast cancer MCF-7 cells was screened for ER-α - protein interactions. Many positive clones were obtained which contained the RACK-1 cDNA sequence. Coimmunoprecipitation of in-vitro translation products of the ER-α and RACK-1 confirmed the interaction between the two proteins. Transfection studies using the estrogen response element spliced to a luciferase reporter gene revealed that constitutive RACK-1 expression was able to powerfully stimulate ER-α activity under estrogen-free conditions. This effect could be enhanced by 17β-estradiol (E2) and blocked by tamoxifen, an E2 antagonist. These results show that RACK-1 is able to activate the ER-α in the absence of E2, although together with the latter, enhanced effects occur. Since RACK-1 gene expression is stimulated by IGF-1, it is distinctly possible that RACK-1 is the mediator of the stimulatory effects of IGF-1 on ER-α. © 2014 JMS.