969 resultados para Cell invasion, Coalescence, Interacting populations, Diffusion, Proliferation, Cell death
Resumo:
Background. Cisplatin (CP)-induced renal damage is associated with inflammation. Hydrogen sulphide (H(2)S) is involved in models of inflammation. This study evaluates the effect of DL-propargylglycine (PAG), an inhibitor of endogenous H(2)S formation, on the renal damage induced by CP. Methods. The rats were injected with CP (5 mg/kg, i.p.) or PAG(5 mg/kg twice a day, i.p.) for 4 days, starting 1 h before CP injection. Control rats were injected with 0.15 M NaCl or PAG only. Blood and urine samples were collected 5 days after saline or CP injections for renal function evaluation. The kidneys were removed for tumour necrosis factor (TNF)-alpha quantification, histological, immunohistochemical and Western blot analysis. The cystathionine gamma-lyase (CSE) activity and expression were assessed. The direct toxicity of H(2)S in renal tubular cells was evaluated by the incubation of these cells with NaHS, a donor of H(2)S. Results. CP-treated rats presented increases in plasma creatinine levels and in sodium and potassium fractional excretions associated with tubulointerstitial lesions in the outer medulla. Increased expression of TNF-alpha, macrophages, neutrophils and T lymphocytes, associated with increased H(2)S formation rate and CSE expression, were also observed in the outer medulla from CP-injected rats. All these alterations were reduced by treatment with PAG. A direct toxicity of NaHS for renal tubular epithelial cells was not observed. Conclusions. Treatment with PAG reduces the renal damage induced by CP. This effect seems to be related to the H2S formation and the restriction of the inflammation in the kidneys from PAG+CP-treated rats.
Resumo:
Aims: Cisplatin (CP) promotes increased production of reactive oxygen species, which can activate p38 mitogen activated protein kinases (p38 MAPKs) leading to apoptosis and increased expression of proinflammatory mediators that intensify the cytotoxic effects of CP. We investigated the effect of the treatment with S13203580, a p38 MAPKs inhibitor, on oxidative stress, on the oxidation-associated signal, p38 MAPK and on apoptosis in U-injected rats, starting after the beginning of the renal damage. Main methods: Rats (n = 21) were injected with CP (5 mg/kg, i.p.) and 3 and 4 days after some of them (n = 8) were treated with SB203580 (0.5 mg/kg, i.p.). Controls (n = 6) received saline (i.p.). Two or five days after saline or CP injections, plasma creatinine, urinary volume, sodium and potassium fractional excretions, blood urea nitrogen and urinary lipid peroxidation were measured. The kidneys were removed for histological, apoptosis, immunohistochemical and Western blot studies. Key findings: CP caused abnormalities in kidney functions and structure associated with raised urinary peroxidation levels and higher number of apoptotic cells in the outer medulla. The immunostaining studies showed increased numbers of macrophages/monocytes and p-p38 MAPKs positive cells in the renal outer medulla. The increase of p-p38 MAPKs expression was confirmed by Western blot analysis. All of these alterations were attenuated by treatment with S13203580. Significance: These data suggest that the beneficial effect of SB203580 on CP-induced renal damage might be related, in part, to the blockade of p38 MAPK activation with reduction of the inflammatory process, oxidative stress and apoptotic cell death. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Chlorhexidine (CHX), widely used as antiseptic and therapeutic agent in medicine and dentistry, has a toxic effect both in vivo and in vitro. The intrinsic mechanism underlying CHX-induced cytotoxicity in eukaryotic cells is, however, still unknown. A recent study from our laboratory has suggested that CHX may induce death in cultured L929 fibroblasts via endoplasmic reticulum (ER) stress. This hypothesis was further tested by means of light and electron microscopy, quantification of apoptosis and necrosis by flow cytometry, fluorescence visualization of the cytoskeleton and endoplasmic reticulum, and evaluation of the expression of 78-kDa glucose-regulated protein 78 (Grp78), a marker of activation of the unfolded protein response (UPR) in cultured L929 fibroblasts. Our finding showing increased Grp 78 expression in CHX-treated cells and the results of flow cytometry, cytoskeleton and endoplasmic reticulum fluorescence visualization, and scanning and transmission electron microscopy allowed us to suggest that CHX elicits accumulation of proteins in the endoplasmic reticulum, which causes ER overload, resulting in ER stress and cell death either by necrosis or apoptosis. It must be pointed out, however, that this does not necessarily mean that ER stress is the only way that CHX kills L929 fibroblasts, but rather that ER stress is an important target or indicator of cell death induced by this drug. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Purpose: To investigate potential retinal neuroprotective effects of oral lamotrigine in rabbits after pars plana vitrectomy (PPV) and intravitreal silicone oil injection (SOI). Methods: Twelve New Zealand rabbits (weight, 2.0-2.5 kg) underwent PPV with SOI on the right eye. For 30 days postoperatively, 6 rabbits received a daily oral dose of lamotrigine (25 mg/kg), and 6 rabbits received a daily oral dose of water. The animals were killed 30 days after surgery. All retinas were processed histologically, immunostained using glial fibrillary acidic protein (GFAP), and analyzed by fluorescence microscopy. Retina sections from all groups were analyzed by TUNEL for the presence of apoptosis and stained with hematoxylin-eosin for morphologic analysis and retina cell density measurements in each layer using a Zeiss Axiophot microscope and KS 400 software. Results: Retinas from water-operated eyes showed a significant decrease in cell density associated with cell death compared with retinas from water-control eyes; cell density was reduced by 56% in the outer nuclear layer (ONL), 49% in the inner nuclear layer (INL), and 64% in the ganglion cell layer (GCL). Lamotrigine-operated retinas showed a reduction in cell death when compared with water-operated retinas; cell death was reduced by 52% in the ONL, 25% in the INL, and 56% in the GCL. Water-operated retinas showed TUNEL-positive cells and GFAP immunofluorescence throughout Muller cell processes; lamotrigine-operated retinas showed no TUNEL-positive cells and decreased GFAP staining when compared with water-operated retinas. Conclusions: PPV with SOI was associated with apoptosis of retinal cells and activation of glial cells in rabbit eyes. Oral lamotrigine administration provided protection against these effects.
Resumo:
Injury triggers inflammatory responses and tissue repair. Several treatments are currently in use to accelerate healing: however, more efficient formulations are still needed for specific injuries. Since unsaturated fatty acids modulate immune responses, we aimed to evaluate their therapeutic effects on wound healing. Skin wounds were induced in BALB/c mice and treated for 5 days with n-3, n-9 fatty acids or vehicle (control). n-9 treated mice presented smaller wounds than control and n-3 at 120 h post-surgery (p.s.). Collagen III mRNA,TIMP1 and MMP9 were significantly elevated in n-9 group compared to n-3 or vehicle at 120 h p.s. Among the inflammatory mediators studied we found that IL-10, TNF-alpha and IL-17 were also higher in n-9 treated group compared to n-3 or vehicle at 120 h p.s. Interestingly, COX2 had decreased expression on wound tissue treated with n-9. Inflammatory infiltrate analysis revealed diminished frequency of CD4(+), CD8(+) and CD11b(+) cells in n-9 wounds at 24 and 120 h p.s., which was not related to cell death, since in vitro apoptosis experiments did not show any cell damage after fatty acids administration. These results suggested that unsaturated fatty acids, specifically n-9, modulate the inflammation in the wound and enhance reparative response in vivo. n-9 may be a useful tool in the treatment of cutaneous wounds. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
An L-amino acid oxidase (BjarLAAO-I) from Bothrops jararaca snake venom was highly purified using a stepwise sequential chromatography on Sephadex G-75, Benzamidine Sepharose and Phenyl Sepharose. Purified BjarLAAO-I showed a molecular weight around 60,000 under reducing conditions and about 125,000 in the native form, when analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, respectively. BjarLAAO-I is a homodimeric acidic glycoprotein, pI similar to 5.0, and N-terminal sequence showing close structural homology with other snake venom LAAOs. The purified enzyme catalysed the oxidative deamination of L-amino acids, the most specific substrate being L-Phe. Five amino acids, L-Ser, L-Pro, L-Gly, L-Thr and L-Cys were not oxidized, clearly indicating a significant specificity. BjarLAAO-I significantly inhibited Ehrlich ascites tumour growth and induced an influx of polymorphonuclear cells, as well as spontaneous liberation of H(2)O(2) from peritoneal macrophages. Later, BjarLAAO-I induced mononuclear influx and peritoneal macrophage spreading. Animals treated with BjarLAAO-I showed higher survival time.
Resumo:
Ipomoea carnea is a toxic plant that grows in tropical areas, and is readily consumed by grazing goats. The plant contains the alkaloids swainsonine and calystegines, which inhibit cellular enzymes and cause systematic cell death. This study evaluated the behavioral effects on dams and kids of prenatal ingestion of this plant. Freshly harvested leaves of I. carnea (10 g/kg body weight) were fed daily to nine pregnant goats from the fifth to the 16th week of gestation; five pregnant goats were controls. Dam and kid behavior were evaluated during 2-hr postpartum. Further evaluation of the offspring was performed using various tests after birth: (1) reaching and discriminating their dam from an alien doe (two tests at 12-hr postpartum), and (2) navigating a progressive maze (2, 4, and 6 days postpartum). Postnatal (n=2) and fetal (n=2) mortality were observed in the treated group. Intoxicated kids had difficulty in standing at birth, and only one was able to suckle within 2 hr of birth. Treated kids were slower than controls to arrive at their dam in the discrimination test; treated kids often (seven of nine completed tests) incorrectly chose the alien dam (controls: 0/10 tests). During some runs on days 2, 4, and 6 postpartum, treated kids were slower to leave the starting point of the maze, and were slower to arrive at the dam on all test days. This study suggests that the offspring of pregnant goats given I. carnea during gestation have significant behavioral alterations and developmental delays. Birth Defects Res (Part B) 92:131-138, 2011. (C) 2011 Wiley-Liss, Inc.
Resumo:
Bovine Herpesvirus type-5 (BoHV-5), which is potentially neuropathogenic, was recently described to be related with reproductive disorders in cows. The objective was to elucidate mechanisms involved in propagation of BoHV-5 in embryonic cells. For this purpose, bovine embryos produced in vitro were assayed for apoptotic markers after experimental infection of oocytes, in vitro fertilization, and development. Host DNA fragmentation was detected with a TUNEL assay, expression of annexin-V was measured with indirect immunofluorescence, and viral DNA was detected with in situ hybridization. Infective BoHV-5 virus was recovered from embryos derived from exposed oocytes after two consecutive passages on Madin-Darby bovine kidney (MDBK) cells. The viral DNA corresponding to US9 gene, localized between nucleotides 126243 to 126493, was detected in situ and amplified. There was no significant difference between the ratio of TUNEL stained nuclei and total cells in good quality blastocysts (0.87 +/- 0.05, mean SD), but there were differences (P < 0.05) between infected (0.18 +/- 0.05) and uninfected blastocysts (0.73 +/- 0.07). The Annexin-V label was more intense in uninfected embryos (0.79 +/- 0.04; P < 0.05). The quality of infected and uninfected embryos was considered equal, with no significant effect on embryonic development. In conclusion, we inferred that BoHV-5 infected bovine oocytes, replicated, and suppressed some apoptotic pathways, without significantly affecting embryonic development. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Background: Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) is a Gram-negative bacterium present in the oral cavity and is usually associated with localized aggressive periodontitis. Isolated antigens from A. actinomycetemcomitans can activate innate immune cells through Toll-like receptors (TLRs), which are molecules that recognize structural components conserved among microorganisms. In this study, we evaluate the role of TLR2 in the recognition of A. actinomycetemcomitans. Methods: Macrophages and neutrophils from knockout mice with targeted disruption of TLR2 (TLR2(-/-) mice) and wild-type mice were collected and used for the subsequent assays. The production of cytokines and chemokines was evaluated by enzyme-linked immunosorbent assay (ELISA), and the presence of apoptotic cells was determined by flow cytometry. In addition, the mechanisms that modulate the outcome of A. actinomycetemcomitans-induced periodontal disease in TLR2(-/-) mice were examined. Results: The results show that TLR2-deficient mice developed more severe periodontitis after A. actinomycetemcomitans infection, characterized by significantly higher bone loss and inflammatory cell migration to periodontal tissues. The inflammatory cell influx into the peritoneal cavities of TLR2(-/-) mice was three-fold lower than that observed for the littermate controls. A significantly diminished production of the cytokines tumor necrosis factor-alpha and interleukin-1 beta as well as the chemokine CC-ligand-5 in the peritoneal cavities of TLR2(-/-) mice was observed. In addition, a high frequency of apoptotic cells in the inflammatory exudates from TLR2(-/-) mice was observed. Phagocytosis and nitric oxide production was diminished in cells from TLR2(-/-) mice, facilitating the dissemination of the pathogen to the spleen. Conclusion: The results of this study highlight the involvement of TLR2 in recognizing A. actinomycetemcomitans and its essential role in controlling A. actinomycetemcomitans infection. J Periodontot 2009,80:2070-2019.
Resumo:
Aims: Epstein-Barr virus (EBV) and its associated proteins may be protective against the occurrence of apoptosis that would normally inhibit cancer development and progression. Alternatively, the viral infection may cause altered or mutated expression of oncogenes or tumour suppressor genes that are necessary for tumour development. an action that may also involve apoptosis, In this study, a relationship was sought between occurrence of EBV infection, expression of apoptosis-associated proteins (tumour suppressor gene p53 and oncogenes c-myc and bcl-2) and levels of cell death (apoptosis or necrosis) in 119 cases of gastric carcinoma. Methods and results: The EBV status of the gastric carcinomas (using the EBV-encoded small RNA I (EBER-1) and in-situ hybridization), stage and grade of tumour and sex of patients were compared for bcl-2, p53 and c-myc expression patterns. EBER-1 was detected in approximately 20% of cases studied. There was no significant correlation between levels of cell death in the tumour tissue and EBV status. In the protein analyses, development and progression of gastric carcinoma, with or without EBV infection. was independent of bcl-2 expression. However, in gastric cancers with EBV infection, p53 overexpression was inhibited and c-myc expression was increased in early stage cancers, in comparison with decreased c-myc expression in late stage cancers. Conclusions: The p53 and c-myc expression patterns indicate that EBV-infected gastric carcinomas are less likely to have a natural regression via apoptosis at an early stage and explain, in part, the resistance to treatment of late stage of gastric cancers.
Resumo:
This study investigated the response of human alveolar bone-derived cells to a novel poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane. Osteoblastic cells were cultured in osteogenic conditions either on P(VDF-TrFE)/BT or polytetrafluoroethylene (PTFE) for up to 14 days. At 7 and 14 days, the mRNA expression of Runt-related transcription factor 2 (RUNX2), Type I collagen (COL I), Osteopontin (OPN), Alkaline phosphatase (ALP), Bone sialoprotein (BSP), and Osteocalcin (OC), key markers of the osteoblastic phenotype, and of Bcl2-associated X protein (Bax), B-cell CLL/lymphoma 2 (Bcl-2), and Survivin (SUR), associated with the control of the apoptotic cell death, was assayed by real-time PCR. In situ ALP activity was qualitatively evaluated by means of Fast red staining. Surface characterization was also qualitatively and quantitatively assayed in terms of topography, roughness, and wettability. Cells grown on P(VDF-TrFE)/BT exhibited a significantly higher mRNA expression for all markers compared to the ones on PTFE, except for Bcl-2, which was not detected for both groups. Additionally, Fast red staining was noticeably stronger in cultures on P(VDF-TrFE)/BT at 7 and 14 days. At micron-and submicron scale, SEM images and roughness analysis revealed that PTFE and P(VDF-TrFE)/BT exhibited a smooth topography and a similar roughness, respectively. PTFE membrane displayed higher contact angles compared with P(VDF-TrFE)/BT, as indicated by wettability assay. The novel P(VDF-TrFE)/BT membrane supports the acquisition of the osteoblastic phenotype in vitro, while up-regulating the expression of apoptotic markers. Further in vivo experiments should be carried out to confirm the capacity of P(VDF-TrFE)/BT membrane in promoting bone formation in guided bone regeneration.
Resumo:
Spinal cord injury (SCI) causes motor and sensory deficits that impair functional performance, and significantly impacts life expectancy and quality. Animal models provide a good opportunity to test therapeutic strategies in vivo. C57BL/6 mice were subjected to laminectomy at T9 and compression with a vascular clip (30 g force, 1 min). Two groups were analyzed: injured group (SCI, n = 33) and laminectomy only (Sham, n = 15). Locomotor behavior (Basso mouse scale-BMS and global mobility) was assessed weekly. Morphological analyses were performed by LM and EM. The Sham group did not show any morphofunctional alteration. All SCI animals showed flaccid paralysis 24 h after injury. with subsequent improvement. The BMS score of the SCI group improved until the intermediate phase (2.037 +/- 1.198): the Sham animals maintained the highest BMS score (8.981 +/- 0.056). p < 0.001 during the entire time. The locomotor speed was slower in the SCI animals (5.581 +/- 0.871) than in the Sham animals (15.80 +/- 1.166), p < 0.001. Morphological analysis of the SCI group showed, in the acute phase, edema, hemorrhage, multiple cavities, fiber degeneration, cell death and demyelination. In the chronic phase we observed glial scarring, neuron death, and remyelination of spared axons by oligodendrocytes and Schwann cells. In conclusion, we established a simple, reliable, and inexpensive clip compression model in mice, with functional and morphological reproducibility and good validity. The availability of producing reliable injuries with appropriate outcome measures represents great potential for studies involving cellular mechanisms of primary injury and repair after traumatic SCI. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Studies involving estrogen treatment of ovariectomized rats or mice have attributed to this hormone a neuroprotective effect on the substantia nigra pars compacta (SNpc) neurons. We investigated the effect of estradiol replacement in ovariectomized rats on the survival of dopaminergic mesencephalic cell and the integrity of their projections to the striatum after microinjections of 1 mu g of 6-hydroxydopamine (6-OHDA) into the right SNpc or medial forebrain bundle (MFB). Estradiol replacement did not prevent the reduction either in the striatal concentrations of DA and metabolites or in the number of nigrostriatal dopaminergic neurons following lesion with 1 mu g of 6-OHDA into the SNpc. Nevertheless, estradiol treatment reduced the decrease in striatal DA following injection of 1 mu g of 6-OHDA into the MFB. Results suggest therefore that estrogen protect nigrostriatal dopaminergic neurons against a 6-OHDA injury to the MFB but not the SNpc. This may be due to the distinct degree of lesions promoted in these different rat models of Parkinson`s disease.
Resumo:
Purpose: To determine whether constriction of proximal arterial vessels precedes involution of the distal hyaloid vasculature in the mouse, under normal conditions, and whether this vasoconstriction is less pronounced when the distal hyaloid network persists, as it does in oxygen-induced retinopathy (OIR). Methods: Photomicrographs of the vasa hyaloidea propria were analysed from pre-term pups (1-2 days prior to birth), and on Days 1-11 post-birth. The OIR model involved exposing pups to similar to 90% O-2 from D1-5, followed by return to ambient air. At sampling times pups were anaesthetised and perfused with india ink. Retinal flatmounts were also incubated with FITC-lectin (BS-1, G. simplicifolia,); this labels all vessels, allowing identification of vessels not patent to the perfusate. Results: Mean diameter of proximal hyaloid vessels in preterm pups was 25.44 +/- 1.98 mum; +/-1 SEM). Within 3-12 hrs of birth, significant vasoconstriction was evident (diameter:12.45 +/- 0.88 mum), and normal hyaloid regression subsequently occurred. Similar vasoconstriction occurred in the O-2-treated group, but this was reversed upon return to room air, with significant dilation of proximal vessels by D7 (diameter: 31.75 +/- 11.99 mum) and distal hyaloid vessels subsequently became enlarged and tortuous. Conclusions: Under normal conditions, vasoconstriction of proximal hyaloid vessels occurs at birth, preceding attenuation of distal hyaloid vessels. Vasoconstriction also occurs in O-2-treated pups during treatment, but upon return to room air, the remaining hyaloid vessels dilate proximally, and the distal vessels become dilated and tortuous. These observations support the contention that regression of the hyaloid network is dependent, in the first instance, on proximal arterial vasoconstriction.
Resumo:
Although earlier studies on thiamine deficiency have reported increases in extracellular glutamate concentration in the thalamus, a vulnerable region of the brain in this disorder, the mechanism by which this occurs has remained unresolved. Treatment with pyrithiamine, a central thiamine antagonist, resulted in a 71 and 55% decrease in protein levels of the astrocyte glutamate transporters GLT-1 and GLAST, respectively, by immunoblotting in the medial thalamus of day 14 symptomatic rats at loss of righting reflexes. These changes occurred prior to the onset of convulsions and pannecrosis. Loss of both GLT-1 and GLAST transporter sites was also confirmed in this region of the thalamus at the symptomatic stage using immunohistochemical methods. In contrast, no change in either transporter protein was detected in the non-vulnerable frontal parietal cortex. These effects are selective; protein levels of the astrocyte GABA transporter GAT-3 were unaffected in the medial thalamus. In addition, astrocyte-specific glial fibrillary acidic protein (GFAP) content was unchanged in this brain region, suggesting that astrocytes are spared in this disorder. Loss of GLT-1 or GLAST protein was not observed on day 12 of treatment, indicating that down-regulation of these transporters occurs within 48 h prior to loss of righting reflexes. Finally, GLT-1 content was positively correlated with levels of the neurofilament protein alpha -internexin, suggesting that early neuronal drop-out may contribute to the down-regulation of this glutamate transporter and subsequent pannecrosis. A selective, focal loss of GLT-1 and GLAST transporter proteins provides a rational explanation for the increase in interstitial glutamate levels, and may play a major role in the selective vulnerability of thalamic structures to thiamine deficiency-induced cell death.