983 resultados para Cavity implant
Resumo:
Objective: To evaluate the aesthetics of an implant-supported denture at the cleft area, comparing the peri-implant tissues and prosthetic crown with the contralateral tooth. Settings: Hospital for Rehabilitation of Craniofacial Anomalies, Bauru, São Paolo, Brazil. Patients: A total of 39 individuals of both genders, with complete unilateral cleft lip and palate, who received secondary alveolar bone graft and were rehabilitated with single implant-supported dentures at the area of the missing maxillary lateral incisor after completion of orthodontic treatment. Interventions: The following parameters were analyzed in follow-up sessions: length and width of prosthetic crown and contralateral tooth, characteristics of implants, filling of interproximal space by the papilla, and smile height of the patients. Results: The implant-supported prosthetic crowns were longer than the contralateral tooth (p < .001). Among the 78 papillae analyzed, 29 (37.17%) received a score of 3; 32 (41.02%) papillae had a score of 2; and 17 (21.79%) received a score of 1. Concerning the smile height, among the 39 patients analyzed, 23 (56.41%) had a medium smile, 15 (38.46%) had a high smile, and two (5.12%) presented a low smile. Conclusion: The use of dental implants to rehabilitate the edentulous cleft area is an excellent option. However, adequate evaluation of the bone quantity and quality, positioning and shape of adjacent teeth, smile height, and patient expectations should be considered to achieve success and avoid aesthetic deformities such as elongated teeth and absence of gingival papillae.
Resumo:
The rhea (Rhea americana americana) is an american bird belonging to Ratite's family. Studies related to its morphology are still scarce. This study aims to describe the macroscopic structures of the oropharyngeal cavity. Five heads (2 to 6 months old) formalin preserved were anatomically dissected to expose the oropharynx. The oropharynx of the rhea was "bell-shaped" composed by the maxillary and mandibular rhamphotheca. The roof and floor presented two distinct regions different in colour of the mucosa. The rostral region was pale pink contrasting to grey coloured caudal region. The median longitudinal ridge extended rostrally from the apex of the choana to the tip of the beak in the roof and it is clearly more prominent and rigid than the homolog in the floor that appeared thin and stretched merely along the rostral portion of the regio interramalis. The floor was formed by the interramal region, (regio interramalis) tongue and laryngeal mound containing glove-shaped glottis. This study confirmed the basic morphology of the oropharinx of the rhea. However, important morphological information not previously described is highlighted and contradictory information present in the literature is clarified.
Resumo:
OBJECTIVE: To assess the effects of rapid maxillary expansion on facial morphology and on nasal cavity dimensions of mouth breathing children by acoustic rhinometry and computed rhinomanometry. METHODS: Cohort; 29 mouth breathing children with posterior crossbite were evaluated. Orthodontic and otorhinolaryngologic documentation were performed at three different times, i.e., before expansion, immediately after and 90 days following expansion. RESULTS: The expansion was accompanied by an increase of the maxillary and nasal bone transversal width. However, there were no significant differences in relation to mucosal area of the nose. Acoustic rhinometry showed no difference in the minimal cross-sectional area at the level of the valve and inferior turbinate between the periods analyzed, although rhinomanometry showed a statistically significant reduction in nasal resistance right after expansion, but were similar to pre-treatment values 90 days after expansion. CONCLUSION: The maxillary expansion increased the maxilla and nasal bony area, but was inefficient to increase the nasal mucosal area, and may lessen the nasal resistance, although there was no difference in nasal geometry. Significance: Nasal bony expansion is followed by a mucosal compensation.
Resumo:
This work reports on the construction and spectroscopic analyses of optical micro-cavities (OMCs) that efficiently emit at ~1535 nm. The emission wavelength matches the third transmission window of commercial optical fibers and the OMCs were entirely based on silicon. The sputtering deposition method was adopted in the preparation of the OMCs, which comprised two Bragg reflectors and one spacer layer made of either Er- or ErYb-doped amorphous silicon nitride. The luminescence signal extracted from the OMCs originated from the 4I13/2→4I15/2 transition (due to Er3+ ions) and its intensity showed to be highly dependent on the presence of Yb3+ ions.According to the results, the Er3+-related light emission was improved by a factor of 48 when combined with Yb3+ ions and inserted in the spacer layer of the OMC. The results also showed the effectiveness of the present experimental approach in producing Si-based light-emitting structures in which the main characteristics are: (a) compatibility with the actual microelectronics industry, (b) the deposition of optical quality layers with accurate composition control, and (c) no need of uncommon elements-compounds nor extensive thermal treatments. Along with the fundamental characteristics of the OMCs, this work also discusses the impact of the Er3+-Yb3+ ion interaction on the emission intensity as well as the potential of the present findings.
Resumo:
Obiettivi: Valutare la modalità più efficace per la riabilitazione funzionale del limbo libero di fibula "single strut", dopo ampie resezioni per patologia neoplastica maligna del cavo orale. Metodi: Da una casistica di 62 ricostruzioni microvascolari con limbo libero di fibula, 11 casi sono stati selezionati per essere riabilitati mediante protesi dentale a supporto implantare. 6 casi sono stati trattati senza ulteriori procedure chirurgiche ad eccezione dell'implantologia (gruppo 1), affrontando il deficit di verticalità della fibula attraverso la protesi dentaria, mentre i restanti casi sono stati trattati con la distrazione osteogenetica (DO) della fibula prima della riabilitazione protesica (gruppo 2). Il deficit di verticalità fibula/mandibola è stato misurato. I criteri di valutazione utilizzati includono la misurazione clinica e radiografica del livello osseo e dei tessuti molli peri-implantari, ed il livello di soddisfazione del paziente attraverso un questionario appositamente redatto. Risultati: Tutte le riabilitazioni protesiche sono costituite da protesi dentali avvitate su impianti. L'età media è di 52 anni, il rapporto uomini/donne è di 6/5. Il numero medio di impianti inseriti nelle fibule è di 5. Il periodo massimo di follow-up dopo il carico masticatorio è stato di 30 mesi per il gruppo 1 e di 38.5 mesi (17-81) di media per il gruppo 2. Non abbiamo riportato complicazioni chirurgiche. Nessun impianto è stato rimosso dai pazienti del gruppo 1, la perdita media di osso peri-implantare registrata è stata di 1,5 mm. Nel gruppo 2 sono stati riportati un caso di tipping linguale del vettore di distrazione durante la fase di consolidazione e un caso di frattura della corticale basale in assenza di formazione di nuovo osso. L'incremento medio di osso in verticalità è stato di 13,6 mm (12-15). 4 impianti su 32 (12.5%) sono andati persi dopo il periodo di follow-up. Il riassorbimento medio peri-implantare, è stato di 2,5 mm. Conclusioni: Le soluzioni più utilizzate per superare il deficit di verticalità del limbo libero di fibula consistono nell'allestimento del lembo libero di cresta iliaca, nel posizionare la fibula in posizione ideale da un punto di vista protesico a discapito del profilo osseo basale, l'utilizzo del lembo di fibula nella versione descritta come "double barrel", nella distrazione osteogenetica della fibula. La nostra esperienza concerne il lembo libero di fibula che nella patologia neoplastica maligna utilizziamo nella versione "single strut", per mantenere disponibili tutte le potenzialità di lunghezza del peduncolo vascolare, senza necessità di innesti di vena. Entrambe le soluzioni, la protesi dentale ortopedica e la distrazione osteogenetica seguita da protesi, entrambe avvitate su impianti, costituiscono soluzioni soddisfacenti per la riabilitazione funzionale della fibula al di là del suo deficit di verticalità . La prima soluzione ha preso spunto dall'osservazione dei buoni risultati della protesi dentale su impianti corti, avendo un paragonabile rapporto corona/radice, la DO applicata alla fibula, sebbene sia risultata una metodica con un numero di complicazioni più elevato ed un maggior livello di riassorbimento di osso peri-implantare, costituisce in ogni caso una valida opzione riabilitativa, specialmente in caso di notevole discrepanza mandibulo/fibulare. Decisiva è la scelta del percorso terapeutico dopo una accurata valutazione di ogni singolo caso. Vengono illustrati i criteri di selezione provenienti dalla nostra esperienza.
Resumo:
Protein-adsorption occurs immediately following implantation of biomaterials. It is unknown at which extent protein-adsorption impacts the cellular events at bone-implant interface. To investigate this question, we compared the in-vitro outcome of osteoblastic cells grown onto titanium substrates and glass as control, by modulating the exposure to serum-derived proteins. Substrates consisted of 1) polished titanium disks; 2) polished disks nanotextured with H2SO4/H2O2; 3) glass. In the pre-adsorption phase, substrates were treated for 1h with αMEM alone (M-noFBS) or supplemented with 10%-foetal-bovine-serum (M-FBS). MC3T3-osteoblastic-cells were cultured on the pre-treated substrates for 3h and 24h, in M-noFBS and M-FBS. Subsequently, the culture medium was replaced with M-FBS and cultures maintained for 3 and 7days. Cell-number was evaluated by: Alamar-Blue and MTT assay. Mitotic- and osteogenic-activities were evaluated through fluorescence-optical-microscope by immunolabeling for Ki-67 nuclear-protein and Osteopontin. Cellular morphology was evaluated by SEM-imaging. Data were statistically analyzed using ANOVA-test, (p<0.05). At day3 and day7, the presence or absence of serum-derived proteins during the pre-adsorption phase had not significant effect on cell-number. Only the absence of FBS during 24h of culture significantly affected cell-number (p<0.0001). Titanium surfaces performed better than glass, (p<0.01). The growth rate of cells between day3 and 7 was not affected by the initial absence of FBS. Immunolabeling for Ki-67 and Osteopontin showed that the mitotic- and osteogenic- activity were ongoing at 72h. SEM-analysis revealed that the absence of FBS had no major influence on cell-shape. • Physico-chemical interactions without mediation by proteins are sufficient to sustain the initial phase of culture and guide osteogenic-cells toward differentiation. • The challenge is avoiding adsorption of ‘undesirables’ molecules that negatively impact on the cueing cells receive from surface. This may not be a problem in healthy patients, but may have an important role in medically-compromised-individuals in whom the composition of tissue-fluids is altered.
Resumo:
Efficient coupling of light to quantum emitters, such as atoms, molecules or quantum dots, is one of the great challenges in current research. The interaction can be strongly enhanced by coupling the emitter to the eva-nescent field of subwavelength dielectric waveguides that offer strong lateral confinement of the guided light. In this context subwavelength diameter optical nanofibers as part of a tapered optical fiber (TOF) have proven to be powerful tool which also provide an efficient transfer of the light from the interaction region to an optical bus, that is to say, from the nanofiber to an optical fiber. rnAnother approach towards enhancing light–matter interaction is to employ an optical resonator in which the light is circulating and thus passes the emitters many times. Here, both approaches are combined by experi-mentally realizing a microresonator with an integrated nanofiber waist. This is achieved by building a fiber-integrated Fabry-Pérot type resonator from two fiber Bragg grating mirrors with a stop-band near the cesium D2-line wavelength. The characteristics of this resonator fulfill the requirements of nonlinear optics, optical sensing, and cavity quantum electrodynamics in the strong-coupling regime. Together with its advantageous features, such as a constant high coupling strength over a large volume, tunability, high transmission outside the mirror stop band, and a monolithic design, this resonator is a promising tool for experiments with nanofiber-coupled atomic ensembles in the strong-coupling regime. rnThe resonator's high sensitivity to the optical properties of the nanofiber provides a probe for changes of phys-ical parameters that affect the guided optical mode, e.g., the temperature via the thermo-optic effect of silica. Utilizing this detection scheme, the thermalization dynamics due to far-field heat radiation of a nanofiber is studied over a large temperature range. This investigation provides, for the first time, a measurement of the total radiated power of an object with a diameter smaller than all absorption lengths in the thermal spectrum at the level of a single object of deterministic shape and material. The results show excellent agreement with an ab initio thermodynamic model that considers heat radiation as a volumetric effect and that takes the emitter shape and size relative to the emission wavelength into account. Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and has important applications, such as heat management in nano-devices or radiative forcing of aerosols in Earth's climate system. rnUsing a similar method, the effect of the TOF's mechanical modes on the polarization and phase of the fiber-guided light is studied. The measurement results show that in typical TOFs these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that couple to the nanofiber-guided light via the strain-optic effect. An ab-initio opto-mechanical model of the TOF is developed that provides an accurate quantitative prediction for the mode spectrum and the mechanically induced polarization and phase fluctuations. These high-frequency fluctuations may limit the ultimate ideality of fiber-coupling into photonic structures. Furthermore, first estimations show that they may currently limit the storage time of nanofiber-based atom traps. The model, on the other hand, provides a method to design TOFs with tailored mechanical properties in order to meet experimental requirements. rn
Resumo:
Nowadays the number of hip joints arthroplasty operations continues to increase because the elderly population is growing. Moreover, the global life expectancy is increasing and people adopt a more active way of life. For this reasons, the demand of implant revision operations is becoming more frequent. The operation procedure includes the surgical removal of the old implant and its substitution with a new one. Every time a new implant is inserted, it generates an alteration in the internal femur strain distribution, jeopardizing the remodeling process with the possibility of bone tissue loss. This is of major concern, particularly in the proximal Gruen zones, which are considered critical for implant stability and longevity. Today, different implant designs exist in the market; however there is not a clear understanding of which are the best implant design parameters to achieve mechanical optimal conditions. The aim of the study is to investigate the stress shielding effect generated by different implant design parameters on proximal femur, evaluating which ranges of those parameters lead to the most physiological conditions.
Prediction of dental implant torque with a fast and automatic finite element analysis: a pilot study
Resumo:
Despite its importance, implant removal torque can be assessed at present only after implantation. This paper presents a new technique to help clinicians preoperatively evaluate implant stability.
Resumo:
Abstract Objectives: To investigate the influence of protein incorporation on the resistance of biomimetic calcium-phosphate coatings to the shear forces that are generated during implant insertion. Materials and Methods: Thirty-eight standard (5 x 13 mm) Osseotite((R)) implants were coated biomimetically with a layer of calcium phosphate, which either lacked or bore a co-precipitated (incorporated) depot of the model protein bovine serum albumin (BSA). The coated implants were inserted into either artificial bone (n=18) or the explanted mandibles of adult pigs (n=12). The former set-up was established for the measurement of torque and of coating losses during the insertion process. The latter set-up was established for the histological and histomorphometric analysis of the fate of the coatings after implantation. Results: BSA-bearing coatings had higher mean torque values than did those that bore no protein depot. During the insertion process, less material was lost from the former than from the latter type of coating. The histological and histomorphometric analysis revealed fragments of material to be sheared off from both types of coating at vulnerable points, namely, at the tips of the threads. The sheared-off fragments were retained within the peri-implant space. Conclusion: The incorporation of a protein into a biomimetically prepared calcium-phosphate coating increases its resistance to the shear forces that are generated during implant insertion. In a clinical setting, the incorporated protein would be an osteogenic agent, whose osteoinductive potential would not be compromised by the shearing off of coating material, and the osteoconductivity of an exposed implant surface would not be less than that of a coated one. To cite this article: Hägi TT, Enggist L, Michel D, Ferguson SJ, Liu Y, Hunziker EB. Mechanical insertion properties of calcium-phosphate implant coatings. Clin. Oral Impl. Res. xx, 2010; 000-000. doi: 10.1111/j.1600-0501.2010.01916.x.
Resumo:
Tumours in the oral cavity and oropharynx differ in presentation and prognosis and the detection of spread of tumour from one subsite to another is essential for the T-staging. This article reviews the anatomy and describes the pattern of spread of different cancers arising in the oral cavity and oropharynx; the imaging findings on computerized tomography and magnetic resonance imaging are also described. Brief mention is made on the role of newer imaging modalities such as [(18)F]fluorodeoxyglucose-positron emission tomography/computed tomography, perfusion studies and diffusion-weighted magnetic resonance imaging.
Resumo:
OBJECTIVES: To determine (1) the optimal sites for mini-implant placement in the maxilla and the mandible based on dimensional mapping of the interradicular spaces and cortical bone thickness and (2) The effect of age and sex on the studied anatomic measurements. MATERIAL AND METHODS: The cone beam computed tomography images of 100 patients (46 males, 54 females) divided into two age groups (13-18 years), and (19-27 years) were used. The following interradicular measurements were performed: (1) Buccolingual bone thickness; (2) Mesiodistal spaces both buccally and palatally/lingually; and (3) Buccal and palatal/lingual cortical thicknesses. RESULTS: In the maxilla, the highest buccolingual thickness existed between first and second molars; the highest mesiodistal buccal/palatal distances were between the second premolar and the first molar. The highest buccal cortical thickness was between the first and second premolars. The highest palatal cortical thickness was between central and lateral incisors. In the mandible, the highest buccolingual and buccal cortical thicknesses were between the first and second molars. The highest mesiodistal buccal distance was between the second premolar and the first molar. The highest mesiodistal lingual distance was between the first and second premolars. The highest lingual cortical thickness was between the canine and the first premolar. The males and the older age group had significantly higher buccolingual, buccal, and palatal cortical thicknesses at specific sites and levels in the maxilla and the mandible. CONCLUSIONS: A clinical guideline for optimal sites for mini-implant placement is suggested. Sex and age affected the anatomic measurements in certain areas in the maxilla and the mandible.
Resumo:
Early implant placement is one of the treatment options after tooth extraction. Implant surgery is performed after a healing period of 4 to 8 weeks and combined with a simultaneous contour augmentation using the guided bone regeneration technique to rebuild stable esthetic facial hard- and soft-tissue contours.