939 resultados para Cariaco Basin
Resumo:
Maps: Information on water resources and their uses (technical, legal, etc. issues)
Resumo:
A survey of development priorities and needs for water related information, including information on Water User Associations
Resumo:
A Framework for a Consultation Process: Transboundary cooperation and sustainable water management is urgently needed in the up-stream/down-stream situation of the Umbeluzi River Basin between the Kingdom of Swaziland and the Republic of Mozambique. Thus, the Joint Water Commission (JWC) of the two riparian countries initiated the Umbeluzi River Basin Initiative (URBI) with the objective to develop a joint management plan of the river basin. In response to the request by SADC as well as SDC, a collaboration within CDE’s Eastern and Southern Africa Partnership Programme ESAPP was agreed upon. The project’s general objective is to provide conceptual and methodological support in the design of a consultative process with the aim to assure the participation of all water users within the river basin.
Resumo:
The stratigraphies of foreland basins have been related to orogeny, where continent–continent collision causes the construction of topography and the downwarping of the foreland plate. These mechanisms have been inferred for the Molasse basin, stretching along the northern margin of the European Alps. Continuous flexural bending of the subducting European lithosphere as a consequence of topographic loads alone would imply that the Alpine topography would have increased at least between 30 Ma and ca. 5–10 Ma when the basin accumulated the erosional detritus. This, however, is neither consistent with observations nor with isostatic mass balancing models because paleoaltimetry estimates suggest that the topography has not increased since 20 Ma. Here we show that a rollback mechanism for the European plate is capable of explaining the construction of thick sedimentary successions in the Molasse foreland basin where the extra slab load has maintained the Alpine surface at low, but constant, elevations.
Resumo:
The interior of Hellas Basin displays a complex landscape and a variety of geomorphological domains. One of these domains, the enigmatic banded terrain covers much of the northwestern part of the basin. We use high-resolution (CTX and HiRISE) Digital Terrain Models to show that most of the complex viscous flowing behavior exhibited by the banded terrain is controlled by topography and flow-like interactions between neighboring banded terrain. Furthermore, the interior of the basin hosts several landforms suggestive of the presence of near-surface ice, which include polygonal patterns with elongated pits, scalloped depressions, isolated mounds and collapse structures. We suggest that thermal contraction cracking and sublimation of near-surface ice are responsible for the formation and the development of most of the ice-related landforms documented in Hellas. The relatively pristine form, lack of superposed craters, and strong association with the banded terrain, suggest an Amazonian (<3 Ga) age of formation for these landforms. Finally, relatively high surface pressures (above the triple point of water) expected in Hellas and summer-time temperatures often exceeding the melting point of water ice suggest that the basin may have recorded relatively “temperate” climatic conditions compared to other places on Mars. Therefore, the potentially ice-rich banded terrain may have deformed with lower viscosity and stresses compared to other locations on Mars, which may account for its unique morphology.