989 resultados para Cao


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multi-hit 3-layer delay-line anode (Hexanode) has an increased ability to detect multi-hit events in a collision experiment. Coupled with a pair of micro-channel plates, it can provide position information of the particles even if the particles arrive at the same time or within small time dwell. But it suffers from some ambiguous outputs and signal losses due to timing order and triggering thresholds etc. We have developed a signal reconstruction program to correct those events. After the program correction, the dead time only exists when 2 paxticles arrive at the same time and the same position within a much smaller range. With the combination of Hexanode and the program, the experimental efficiencies will be greatly improved in near threshold double ionization on He collisions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we try to detect the SZ effect in the 2MASS DWT clusters and less bound objects in order to constrain the warm-hot intergalactic medium distribution on large scales by cross-correlation analysis. The results of both observed WMAP and mock SZ effect map indicate that the hot gas distributes from inside as well as outside of the high density regions of galaxy clusters, which is consistent with the results of both observation and hydro simulation. Therefore, the DWT measurement of the cross-correlation would be a powerful tool to probe the missing of baryons in the universe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Employing the recoil ion momentum spectroscopy we investigate the collision between He2+ and argon atoms. By measuring the recoil longitudinal momentum the energy losses of projectile are deduced for capture reaction channels. It is found that in most cases for single- and double-electron capture, the inner electron in the target atom is removed, the recoil ion is in singly or multiply excited states (hollow ion is formed), which indicates that electron correlation plays an important role in the process. The captured electrons prefer the ground states of the projectile. It is experimentally demonstrated that the average energy losses are directly related to charge transfer and electronic configuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the non-Gaussianity induced by the Sunyaev-Zel'dovich (SZ) effect in cosmic microwave background (CMB) fluctuation maps. If a CMB map is contaminated by the SZ effect of galaxies or galaxy clusters, the CMB maps should have similar non-Gaussian features to the galaxy and cluster fields. Using the WMAP data and 2MASS galaxy catalogue, we show that the non-Gaussianity of the 2MASS galaxies is imprinted on WMAP maps. The signature of non-Gaussianity can be seen with the fourth-order cross-correlation between the wavelet variables of the WMAP maps and 2MASS clusters. The intensity of the fourth-order non-Gaussian features is found to be consistent with the contamination of the SZ effect of 2MASS galaxies. We also show that this non-Gaussianity can not be seen by the high-order autocorrelation of the WMAP. This is because the SZ signals in the autocorrelations of the WMAP data generally are weaker than the WMAP-2MASS cross-correlations by a factor f(2), which is the ratio between the powers of the SZ-effect map and the CMB fluctuations on the scale considered. Therefore, the ratio of high-order autocorrelations of CMB maps to cross-correlations of the CMB maps and galaxy field would be effective to constrain the powers of the SZ effect on various scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

State-selective single electron capture cross sections are measured by recoil ion momentum spectroscopy technique for He2+ on He at 30 keV incident energy. The cross sections for capture into ground and excited states are obtained and compared to classical model calculations as well as to the quantum mechanical calculations. The experimental results are in good agreement with quantum mechanical results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e mu A of O7+, 505 e mu A of Xe20+ 306 e mu A of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polypropylene (PP) microporous membranes were successfully prepared by swift heavy ion irradiation and track-etching. Polypropylene foils were irradiated with Au-197 ions of kinetic energy 11.4 MeV.u(-1) (total energy of 2245.8 MeV) and fluence 1x10(8) ions.cm(-2) at normal incidence. The damaged regions produced by the gold ions along the trajectories were etched in H2SO4 and K2Cr2O7 solutions leading to the formation of cylindrical pores in the membranes. The pore diameters of the PP microporous membranes increased from 380 to 1610 nm as the etching time increased from 5 to 30 min. The surface and cross-section morphologies of the porous membranes were characterized by scanning electron microscopy (SEM). The micropores in the membranes were found to be cylindrical in shape, homogeneous in distribution, and equal in size. Some mathematical relations of the porosity of the PP microporous membranes were established by analytic derivation. The microporous membranes were used in lithium-ion batteries to measure their properties as separators. The electrical conductivity of the porous membrane immersed in liquid electrolyte was found to be comparable to that of commercial separators by electrochemical impedance spectroscopy (EIS). The results showed that the porosity and electrical conductivity were dependent on the ion fluence and etching time. By adjusting these two factors, microporous membranes with good porosity and electrical conductivity were made that met the requirements for commercial use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recoiled proton tagged knockout reaction experiments were carried-out for He-8 at 82.5 MeV/u in RIKEN and for He-6 at 65 MeV/u in Lanzhou. The very preliminary results for the distinguish of the reaction mechanism are presented and compared to the kinematics calculation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed, where the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single-particle Green's function technique. The full consistency of the calculations is achieved that the same effective Lagrangian is adopted for the ground state and the excited states. The negative energy states in the Dirac sea are also included in the single-particle Green's function in the no-sea approximation. The currents from the vector meson and photon exchanges and the Coulomb interaction in RCRPA are treated exactly. The spin-orbit interaction is included naturally in the relativistic frame. Numerical results of the RCRPA are checked with the constrained relativistic mean-field theory. We study the effects of the inconsistency, particularly the currents and Coulomb interaction in various collective multipole excitations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With an effective Lagrangian approach, we analyze several NN -> NN pi pi channels by including various resonances with mass up to 1.72 GeV. For the channels with the pion pair of isospin zero, we confirm the dominance of N*(1440) -> N sigma in the near-threshold region. At higher energies and for channels with the final pion pair of isospin one, we find large contributions from N*(1440) -> Delta pi, double-Delta, Delta(1600) -> N*(1440)pi, Delta(1600) -> Delta pi and Delta(1620) -> Delta pi. There are also sizable contributions from Delta -> Delta pi, Delta -> N pi, N -> Delta pi, and nucleon pole at energies close to the threshold. We give a good reproduction to the total cross sections up to beam energies of 2.2 GeV except for the pp -> pp pi(0)pi(0) channel at energies around 1.1 GeV and our results agree with the existing data of differential cross sections of pp -> pp pi(+)p pi(-), pp -> nn pi(+)pi(+), and pp -> pp pi(0)pi(0) which are measured at CELSIUS and COSY.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isospin dependence of the effective pairing interaction is discussed on the basis of the Bardeen, Cooper, and Schrieffer theory of superfluid asymmetric nuclear matter. It is shown that the energy gap, calculated within the mean field approximation in the range from symmetric nuclear matter to pure neutron matter, is not linearly dependent on the symmetry parameter owing to the nonlinear structure of the gap equation. Moreover, the construction of a zero-range effective pairing interaction compatible with the neutron and proton gaps in homogeneous matter is investigated, along with some recent proposals of isospin dependence tested on the nuclear data table.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Landau parameters of Skyrme interactions in the spin and spin-isospin channels are studied using various Skyrme effective interactions with and without tensor correlations. We focus on the role of the tensor terms on the spin and spin-isospin instabilities that can occur in nuclear matter above saturation density. We point out that these instabilities are realized in nuclear matter at the critical density of about two times the saturation density for all the adopted parameter sets. The critical density is shown to be very much dependent not only on the choice of the Skyrme parameter set, but also on the inclusion of the tensor terms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Correlations between the behavior of the nuclear symmetry energy, the neutron skins, and the percentage of energy-weighted sum rule (EWSR) exhausted by the pygmy dipole resonance (PDR) in Ni-68 and Sn-132 are investigated by using different random phase approximation (RPA) models for the dipole response, based on a representative set of Skyrme effective forces plus meson-exchange effective Lagrangians. A comparison with the experimental data has allowed us to constrain the value of the derivative of the symmetry energy at saturation. The neutron skin radius is deduced under this constraint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Differential cross sections for the elastic scattering of halo nucleus He-6 on proton target were measured at 82.3 MeV/u. The experimental results are well reproduced by optical model calculations using global potential KD02 with a reduction of the depth of real volume part by a factor of 0.7. A systematic analysis shows that this behavior might be related to the weakly bound property of unstable nuclei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fully consistent relativistic continuum random phase approximation (RCRPA) has been constructed in the momentum representation in the first part of this paper. In this part we describe the numerical details for solving the Bethe-Salpeter equation. The numerical results are checked by the inverse energy weighted sum rules in the isoscalar giant monopole resonance, which are obtained from the constraint relativistic mean field theory and also calculated with the integration of the RCRPA strengths. Good agreement between the misachieved. We study the effects of the self-consistency violation, particularly the currents and Coulomb interaction to various collective multipole excitations. Using the fully consistent RCRPA method, we investigate the properties of isoscalar and isovector collective multipole excitations for some stable and exotic from light to heavy nuclei. The properties of the resonances, such as the centroid energies and strength distributions are compared with the experimental data as well as with results calculated in other models.