940 resultados para Canning Basin
Resumo:
This study documents the biological signatures impressed upon the sedimentary record underlying both the 5°N upwelling system of the Somali Current and the equatorial area of the Somali Basin out of the upwelling influence. The evolution of these two distinct hydrographic systems is compared for the last 160 kyr. Correspondence and cluster analyses are performed on combined radiolarian and planktonic foraminiferal quantitative data in order to study the changes of the planktonic assemblages through time and space. The Upwelling Radiolarian Index (URI) is used as a productivity proxy. The water temperature and hydrographic structure of the upper water masses appear to be the major factors controlling the distribution patterns of the fauna. The relative abundances of three groups of foraminifera, cold water form (dextral N. pachyderma), mixed layer dwellers (G. trilobus, G. ruber, G. sacculifer, G. conglobatus, and G. glutinata), and thermocline dwellers (G. menardii, G. tumida, N. dutertrei, G. crassaformis, and P. obliquiloculata), follow distinct evolutionary patterns at the two sites during the last 160 kyr. At the equatorial site (core MD 85668), downcore fluctuations in the relative abundances of the three groups are closely related to the glacial/interglacial cyclicity and provide some insights into the interpretation of hydrographic changes. The dominance of the mixed layer foraminifera at the transition intervals between isotope stages 6/5 and 2/1, combined with weak URI values, is thought to reflect the reorganization of the oceanographic circulation. These short-term events (with a duration of < 5000 year) could be related to the rapid inflow of oxygen-depleted water through the Indonesian straits as a result of sea level rise during deglaciation. Underneath the 5°N gyre (core MD 85674), the response to global climatic changes is overprinted by the regional effect of the Somalian upwelling, which has been persistent over the last 160 kyr.