995 resultados para Caloric value
Resumo:
Two commercial enzyme products, Depol 40 (D) and Liquicell 2500 (L), were characterised from a biochemical standpoint and their potential to improve rumen degradation of forages was evaluated in vitro. Enzyme activities were determined at pH 5.5 and 39 degreesC. Analysis of the enzyme activities indicated that L contained higher xylanase and endoglucanase, but lower exoglucanase, pectinase and alpha-amylase activities than D. The Reading Pressure Technique (RPT) was used to investigate the effect of enzyme addition on the in vitro gas production (GP) and organic matter degradation (OMD) of alfalfa (Medicago sativa L.) stems and leaves. A completely randomised design with factorial arrangement of treatments was used. Both alfalfa fractions were untreated or treated with each enzyme at four levels, 20 h before incubation with rumen fluid. Each level of enzyme provided similar amounts of filter paper (D1, L1), endoglucanase (D2, L2), alpha-L-arabinofuranosidase (D3, L3) and xylanase units (D4, L4) per gram forage DM. Enzymes increased the initial OMD in both fractions, with improvements of up to 15% in leaves (D4) and 8% in stems (L2) after 12 h incubation. All enzyme treatments increased the extent of degradation (96 h incubation) in the leaf fractions, but only L2 increased final OMD in the stems. Direct hydrolysis of forage fractions during the pre-treatment period did not fully account for the magnitude of the increases in OMD, suggesting that the increase in rate of degradation was achieved through a combined effect of direct enzyme hydrolysis and synergistic action between the exogenous (applied) and endogenous (rumen) enzymes. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Samples of whole crop wheat (WCW, n = 134) and whole crop barley (WCB, n = 16) were collected from commercial farms in the UK over a 2-year period (2003/2004 and 2004/2005). Near infrared reflectance spectroscopy (NIRS) was compared with laboratory and in vitro digestibility measures to predict digestible organic matter in the dry matter (DOMD) and metabolisable energy (ME) contents measured in vivo using sheep. Spectral models using the mean spectra of two scans were compared with those using individual spectra (duplicate spectra). Overall NIRS accurately predicted the concentration of chemical components in whole crop cereals apart from crude protein. ammonia-nitrogen, water-soluble carbohydrates, fermentation acids and solubility values. In addition. the spectral models had higher prediction power for in vivo DOMD and ME than chemical components or in vitro digestion methods. Overall there Was a benefit from the use of duplicate spectra rather than mean spectra and this was especially so for predicting in vivo DOMD and ME where the sample population size was smaller. The spectral models derived deal equally well with WCW and WCB and Would he of considerable practical value allowing rapid determination of nutritive value of these forages before their use in diets of productive animals. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Foods derived from animals are an important source of nutrients in the diet; for example, milk and meat together provide about 60 and 55% of the dietary intake of Ca and protein respectively in the UK. However, certain aspects of some animal-derived foods, particularly their fat and saturated fatty acid (SFA) contents, have led to concerns that these foods substantially contribute to the risk of CVD, the metabolic syndrome and other chronic diseases. In most parts of Europe dairy products are the greatest single dietary source of SFA. The fatty acid composition of various animal-derived foods is, however, not constant and can, in many cases, be enhanced by animal nutrition. In particular, milk fat with reduced concentrations of the C12-16 SFA and an increased concentration of 18:1 MUFA is achievable, although enrichment with very-long-chain n-3 PUFA is much less efficient. However, there is now evidence that some animal-derived foods (notably milk products) contain compounds that may actively promote long-term health, and research is urgently required to fully characterise the benefits associated with the consumption of these compounds and to understand how the levels in natural foods can be enhanced. It is also vital that the beneficial effects are not inadvertently destroyed in the process of reducing the concentrations of SFA. In the future the role of animal nutrition in creating foods closer to the optimum composition for long-term human health is likely to become increasingly important, but production of such foods on a scale that will substantially affect national diets will require political and financial incentives and great changes in the animal production industry.
Resumo:
The effect of variety, agronomic and environmental factors on the chemical composition and energy value for ruminants and non-ruminants of husked and naked oats grain was studied. Winter oats were grown as experimental plots in each of 2 years on three sites in England. At each site two conventional husked oat cultivars (Gerald and Image) and two naked cultivars (Kynon and Pendragon) were grown. At each site, crops were sown on two dates and all crops were grown with the application of either zero or optimum fertiliser nitrogen. Variety and factors contained within the site + year effect had the greatest influence on the chemical composition and nutritive value of oats, followed by nitrogen ferfiliser treatment. For example, compared with zero nitrogen, the optimum nitrogen fertiliser treatment resulted in a consistent and significant (P < 0.001) increase in crude protein for all varieties at all sites from an average of 95 to 118 g kg(-1) DM, increased the potassium concentration in all varieties from an average of 4.9 to 5.1 g kg(-1) DM (P < 0.01) and reduced total lipid by a small but significant (P < 0.001) amount. Optimum nitrogen increased (P < 0.001) the NDF concentration in the two husked varieties and in the naked variety Pendragon. Naked cultivars were lower in fibre, had considerably higher energy, total lipid, linoleic acid, protein, starch and essential amino acids than the husked cultivars. Thus nutritionists need to be selective in their choice of naked or husked oat depending on the intended dietary use. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A total of 133 samples (53 fermented unprocessed, 19 fermented processed. 62 urea-treated processed) of whole crop wheat (WCW) and 16 samples (five fermented unprocessed, six fermented processed, five urea-treated processed) of whole crop barley (WCB) were collected from commercial farms over two consecutive years (2003/2004 and 2004/2005). Disruption of the maize grains to increase starch availability was achieved at the point of harvest by processors fitted to the forage harvesters. All samples were subjected to laboratory analysis whilst 50 of the samples (24 front Year 1, 26 front Year 2 all WCW except four WCB in Year 2) were subjected to in vivo digestibility and energy value measurements using mature wether sheep. Urea-treated WCW had higher (P<0.05) pH, and dry matter (DM) and crude protein contents and lower concentrations of fermentation products than fermented WCW. Starch was generally lower in fermented, unprocessed WCW and no effect of crop maturity at harvest (as indicated by DM content) on starch concentrations was seen. Urea-treated WCW had higher (P<0.05) in vivo digestible organic matter contents in the DM (DOMD) in Year 1 although this was not recorded in Year 2. There was a close relationship between the digestibility values of organic matter and gross energy thus aiding the use of DOMD to predict metabolisable energy (ME) content. A wide range of ME values was observed (WCW. 8.7-11.8 MJ/kg DM; WCB 7.9-11.2 MJ/kg DM) with the overall ME/DOMD ratio (ME = 0.0156 DOMD) in line With Studies in other forages. There was no evidence that a separate ME/DOMD relationship was needed for WCB which is helpful for practical application. This ratio and other parameters were affected by year of harvest (P<0.05) highlighting the influence of environmental and Other undefined factors. The variability in the composition and nutritive value of WCW and WCB highlights the need for reliable and accurate evaluation methods to be available to assess the Value of these forages before they are included in diets for dairy cows. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Foods derived from domestic animals are a significant source of nutrients in the UK diet. However, certain aspects of some animal-derived foods, notably levels of saturated fatty acids, have given rise to concerns that these foods may contribute to the risk of cardiovascular disease, the metabolic syndrome and other conditions. However, the composition of the many animal-derived foods is not constant and can often be enhanced by manipulating the nutrition of the animal. This paper reviews these possibilities with particular attention to lipids, and draws attention to the fact that milk in particular, contains a number of compounds which may, for example, exert anti-carcinogenic effects. It is clear that the role of animal nutrition in creating foods closer to the optimum composition for long-term human health will not only be more relevant in the future, but will be vital in attempts to improve the health of the human population.
Resumo:
in vitro studies were conducted on five sorghum genotypes developed for the dry tropical highland climate of Kenya and which can be fed to ruminants fresh or as silage. The five sorghum genotypes consisted of two normal white mid-rib (WMR) genotypes, coded E1291 and E65181, and three brown-midrib (BMR) genotypes, coded Lan-5, Lan-6 and Lan-12. Whole mature plants (herbage plus grain) and silage made from E 1291 were used in the study. An in vitro manual gas production technique was used to compare the nutritive characteristics of these genotypes for ruminants. These sorghums differed significantly in true organic matter degraded (OMDeg), which ranged from 520 to 678 g/kg after 24 h incubation and 706 to 805 g/kg after 72 h incubation. All the BMR sorghums had a higher degradability than the WMR genotype, E6518, and the silage, with Lan-5 having the highest degradability. Methane produced per g OMDeg ranged from 40.6 to 46.4 mL/g after 24 h incubation and from 53.1 to 62.6 mL/g after 72 h incubation. It was similar for all genotypes after 24 h incubation but Lan-12 had the highest methane production after 72 h incubation. After 24 h and 72 h incubation all the genotypes produced a similar total amount of gas per OMDeg (293 to 309 and 357 to 385 mL/g, respectively) with similar total short chain fatty acid concentrations in the liquid digesta (7.8 to 10.4 and 9.5 to 10.3 mmol, respectively) and acetate to propionate ratios of 2.16 to 2.49 and 2.35 to 2.87, respectively. The sorghums showed great potential as ruminant feed sources in the region.
Resumo:
The presence of a grass strip was found to be beneficial to soil macrofauna, increasing the species densities and abundances of earthworms, woodlice and staphylinid beetles. The biodiversity of the three main feeding groups - predators, soil ingesters and litter consumers - was also significantly higher in the grass strips than in the field edges without strips, indicating that establishment of grassy margins in arable fields may enhance ecosystem services such as soil fertility and pest control. The grass strip habitat contained a large number of species of soil macrofauna, being second only to hedgerow habitat, with 10% of the total species list for the farm found only within the margins. Of the rare species recorded on the farm, five of the nine were from the grass strips, four of which were found only there. This study shows that establishing grassy strips in the margins of arable fields increases the biodiversity of the soil macrofauna, both within fields (alpha diversity) and across the farm (beta diversity). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The presence of a grass strip was found to be beneficial to soil macrofauna, increasing the species densities and abundances of earthworms, woodlice and staphylinid beetles. The biodiversity of the three main feeding groups – predators, soil ingesters and litter consumers – was also significantly higher in the grass strips than in the field edges without strips, indicating that establishment of grassy margins in arable fields may enhance ecosystem services such as soil fertility and pest control. The grass strip habitat contained a large number of species of soil macrofauna, being second only to hedgerow habitat, with 10% of the total species list for the farm found only within the margins. Of the rare species recorded on the farm, five of the nine were from the grass strips, four of which were found only there. This study shows that establishing grassy strips in the margins of arable fields increases the biodiversity of the soil macrofauna, both within fields (alpha diversity) and across the farm (beta diversity).
Resumo:
1. The establishment of grassy strips at the margins of arable fields is an agri-environment scheme that aims to provide resources for native flora and fauna and thus increase farmland biodiversity. These margins can be managed to target certain groups, such as farmland birds and pollinators, but the impact of such management on the soil fauna has been poorly studied. This study assessed the effect of seed mix and management on the biodiversity, conservation and functional value of field margins for soil macrofauna. 2. Experimental margin plots were established in 2001 in a winter wheat field in Cambridgeshire, UK, using a factorial design of three seed mixes and three management practices [spring cut, herbicide application and soil disturbance (scarification)]. In spring and autumn 2005, soil cores taken from the margin plots and the crop were hand-sorted for soil macrofauna. The Lumbricidae, Isopoda, Chilopoda, Diplopoda, Carabidae and Staphylinidae were identified to species and classified according to feeding type. 3. Diversity in the field margins was generally higher than in the crop, with the Lumbricidae, Isopoda and Coleoptera having significantly more species and/or higher abundances in the margins. Within the margins, management had a significant effect on the soil macrofauna, with scarified plots containing lower abundances and fewer species of Isopods. The species composition of the scarified plots was similar to that of the crop. 4. Scarification also reduced soil- and litter-feeder abundances and predator species densities, although populations appeared to recover by the autumn, probably as a result of dispersal from neighbouring plots and boundary features. The implications of the responses of these feeding groups for ecosystem services are discussed. 5. Synthesis and applications. This study shows that the management of agri-environment schemes can significantly influence their value for soil macrofauna. In order to encourage the litter-dwelling invertebrates that tend to be missing from arable systems, agri-environment schemes should aim to minimize soil cultivation and develop a substantial surface litter layer. However, this may conflict with other aims of these schemes, such as enhancing floristic and pollinator diversity.