941 resultados para Cadmium Sulfide, Semiconductor, Mesoporous Materials, Hydrothermal Process


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proposed work aims to facilitate the development of a microfluidic platform for the production of advanced microcapsules containing active agents which can be the functional constituents of self-healing composites. The creation of such microcapsules is enabled by the unique flow characteristics within microchannels including precise control over shear and interfacial forces for droplet creation and manipulation as well as the ability to form a solid shell either chemically or via the addition of thermal or irradiative energy. Microchannel design and a study of the fluid dynamics and mechanisms for shell creation are undertaken in order to establish a fabrication approach capable of producing healing-agent-containing microcapsules. An in-depth study of the process parameters has been undertaken in order to elucidate the advantages of this production technique including precise control of size (i.e., monodispersity) and surface morphology of the microcapsules. This project also aims to aid the optimization of the mechanical properties as well as healing performance of self-healing composites by studying the effects of the advantageous properties of the as-produced microcapsules. Scale-up of the microfluidic fabrication using parallel devices on a single chip as well as on-chip microcapsule production and shape control will also be investigated. It will be demonstrated that microfluidic fabrication is a versatile approach for the efficient creation of functional microcapsules allowing for superior design of self-healing composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycarbonate (PC) is an important engineering thermoplastic that is currently produced in large industrial scale using bisphenol A and monomers such as phosgene. Since phosgene is highly toxic, a non-phosgene approach using diphenyl carbonate (DPC) as an alternative monomer, as developed by Asahi Corporation of Japan, is a significantly more environmentally friendly alternative. Other advantages include the use of CO2 instead of CO as raw material and the elimination of major waste water production. However, for the production of DPC to be economically viable, reactive-distillation units are needed to obtain the necessary yields by shifting the reaction-equilibrium to the desired products and separating the products at the point where the equilibrium reaction occurs. In the field of chemical reaction engineering, there are many reactions that are suffering from the low equilibrium constant. The main goal of this research is to determine the optimal process needed to shift the reactions by using appropriate control strategies of the reactive distillation system. An extensive dynamic mathematical model has been developed to help us investigate different control and processing strategies of the reactive distillation units to increase the production of DPC. The high-fidelity dynamic models include extensive thermodynamic and reaction-kinetics models while incorporating the necessary mass and energy balance of the various stages of the reactive distillation units. The study presented in this document shows the possibility of producing DPC via one reactive distillation instead of the conventional two-column, with a production rate of 16.75 tons/h corresponding to start reactants materials of 74.69 tons/h of Phenol and 35.75 tons/h of Dimethyl Carbonate. This represents a threefold increase over the projected production rate given in the literature based on a two-column configuration. In addition, the purity of the DPC produced could reach levels as high as 99.5% with the effective use of controls. These studies are based on simulation done using high-fidelity dynamic models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional transportation fuel, petroleum, is limited and nonrenewable, and it also causes pollutions. Hydrogen is considered one of the best alternative fuels for transportation. The key issue for using hydrogen as fuel for transportation is hydrogen storage. Lithium nitride (Li3N) is an important material which can be used for hydrogen storage. The decompositions of lithium amide (LiNH2) and lithium imide (Li2NH) are important steps for hydrogen storage in Li3N. The effect of anions (e.g. Cl-) on the decomposition of LiNH2 has never been studied. Li3N can react with LiBr to form lithium nitride bromide Li13N4Br which has been proposed as solid electrolyte for batteries. The decompositions of LiNH2 and Li2NH with and without promoter were investigated by using temperature programmed decomposition (TPD) and X-ray diffraction (XRD) techniques. It was found that the decomposition of LiNH2 produced Li2NH and NH3 via two steps: LiNH2 into a stable intermediate species (Li1.5NH1.5) and then into Li2NH. The decomposition of Li2NH produced Li, N2 and H2 via two steps: Li2NH into an intermediate species --- Li4NH and then into Li. The kinetic analysis of Li2NH decomposition showed that the activation energies are 533.6 kJ/mol for the first step and 754.2 kJ/mol for the second step. Furthermore, XRD demonstrated that the Li4NH, which was generated in the decomposition of Li2NH, formed a solid solution with Li2NH. In the solid solution, Li4NH possesses a similar cubic structure as Li2NH. The lattice parameter of the cubic Li4NH is 0.5033nm. The decompositions of LiNH2 and Li2NH can be promoted by chloride ion (Cl-). The introduction of Cl- into LiNH2 resulted in the generation of a new NH3 peak at low temperature of 250 °C besides the original NH3 peak at 330 °C in TPD profiles. Furthermore, Cl- can decrease the decomposition temperature of Li2NH by about 110 °C. The degradation of Li3N was systematically investigated with techniques of XRD, Fourier transform infrared (FT-IR) spectroscopy, and UV-visible spectroscopy. It was found that O2 could not affect Li3N at room temperature. However, H2O in air can cause the degradation of Li3N due to the reaction between H2O and Li3N to LiOH. The produced LiOH can further react with CO2 in air to Li2CO3 at room temperature. Furthermore, it was revealed that Alfa-Li3N is more stable in air than Beta-Li3N. The chemical stability of Li13N4Br in air has been investigated by XRD, TPD-MS, and UV-vis absorption as a function of time. The aging process finally leads to the degradation of the Li13N4Br into Li2CO3, lithium bromite (LiBrO2) and the release of gaseous NH3. The reaction order n = 2.43 is the best fitting for the Li13N4Br degradation in air reaction. Li13N4Br energy gap was calculated to be 2.61 eV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For half a century the integrated circuits (ICs) that make up the heart of electronic devices have been steadily improving by shrinking at an exponential rate. However, as the current crop of ICs get smaller and the insulating layers involved become thinner, electrons leak through due to quantum mechanical tunneling. This is one of several issues which will bring an end to this incredible streak of exponential improvement of this type of transistor device, after which future improvements will have to come from employing fundamentally different transistor architecture rather than fine tuning and miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs) in use today. Several new transistor designs, some designed and built here at Michigan Tech, involve electrons tunneling their way through arrays of nanoparticles. We use a multi-scale approach to model these devices and study their behavior. For investigating the tunneling characteristics of the individual junctions, we use a first-principles approach to model conduction between sub-nanometer gold particles. To estimate the change in energy due to the movement of individual electrons, we use the finite element method to calculate electrostatic capacitances. The kinetic Monte Carlo method allows us to use our knowledge of these details to simulate the dynamics of an entire device— sometimes consisting of hundreds of individual particles—and watch as a device ‘turns on’ and starts conducting an electric current. Scanning tunneling microscopy (STM) and the closely related scanning tunneling spectroscopy (STS) are a family of powerful experimental techniques that allow for the probing and imaging of surfaces and molecules at atomic resolution. However, interpretation of the results often requires comparison with theoretical and computational models. We have developed a new method for calculating STM topographs and STS spectra. This method combines an established method for approximating the geometric variation of the electronic density of states, with a modern method for calculating spin-dependent tunneling currents, offering a unique balance between accuracy and accessibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The equilibrium relations of many of the metallic sulfides have long been a source of scientific and commer­cial interest, of particular interest, are the sulfides of nickel and copper, since the economic recovery of both of these useful metals, from their ores, involves the formation of a sulfide at some stage of the operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research was to investigate the possibilities of roasting and leaching a bulk copper-zinc sulfide concentrate, and the subsequent separation of the metals from the leach solution by electro­lytic deposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many deposits of silver ores the grade of the ore de­creases considerably a few hundred feet below the surface. It is believed that in many cases the better ores owe their richness in part to the process of sulphide enrichment. It is recognized, however, that many rich silver ores are hypogene deposits that have been affected very little, if any, by processes of enrichment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon and carbonaceous material have been known to have a deleterious effect upon the cyanidation of gold and silver ores since the very beginning of the process. Organic matter is a common source of impu­rities in cyanide solution, its reducing effect being notorious.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been proven that cadmium forms a very satisfactory plate on steel, which has to withstand severe corrosion, especially the corrosion of sea water and spray. The metal is now successfully plated electrolytically from cyanide solutions, but wherever work is carried on with cyanide, there is great danger of poisoning to the workers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viral infections account for over 13 million deaths per year. Antiviral drugs and vaccines are the most effective method to treat viral diseases. Antiviral compounds have revolutionized the treatment of AIDS, and reduced the mortality rate. However, this disease still causes a large number of deaths in developing countries that lack these types of drugs. Vaccination is the most effective method to treat viral disease; vaccines prevent around 2.5 million deaths per year. Vaccines are not able to offer full coverage due to high operational costs in the manufacturing processes. Although vaccines have saved millions of lives, conventional vaccines often offer reactogenic effects. New technologies have been created to eliminate the undesired side effects. However, new vaccines are less immunogenic and adjuvants such as vaccine delivery vehicles are required. This work focuses on the discovery of new natural antivirals that can reduce the high cost and side effects of synthetic drugs. We discovered that two osmolytes, trimethylamine N-oxide (TMAO) and glycine reduce the infectivity of a model virus, porcine parvovirus (PPV), by 4 LRV (99.99%), likely by disruption of capsid assembly. These osmolytes have the potential to be used as drugs, since they showed antiviral activity after 20 h. We have also focused on improving current vaccine manufacturing processes that will allow fast, effective and economical vaccines to be produced worldwide. We propose virus flocculation in osmolytes followed by microfiltration as an economical alternative for vaccine manufacturing. Osmolytes are able to specifically flocculate hydrophobic virus particles by depleting a hydration layer around the particles and subsequently cause virus aggregation. The osmolyte mannitol was able to flocculate virus particles, and demonstrate a high virus removal, 81% for PPV and 98.1% for Sindbis virus (SVHR). Virus flocculation with mannitol, followed by microfiltration could be used as a platform process for virus purification. Finally, we perform biocompatibility studies on soft-templated mesoporous carbon materials with the aim of using these materials as vaccine delivery vehicles. We discovered that these materials are biocompatible, and the degree of biocompatibility is within the range of other biomaterials currently employed in biomedical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is composed of three life-cycle analysis (LCA) studies of manufacturing to determine cumulative energy demand (CED) and greenhouse gas emissions (GHG). The methods proposed could reduce the environmental impact by reducing the CED in three manufacturing processes. First, industrial symbiosis is proposed and a LCA is performed on both conventional 1 GW-scaled hydrogenated amorphous silicon (a-Si:H)-based single junction and a-Si:H/microcrystalline-Si:H tandem cell solar PV manufacturing plants and such plants coupled to silane recycling plants. Using a recycling process that results in a silane loss of only 17 versus 85 percent, this results in a CED savings of 81,700 GJ and 290,000 GJ per year for single and tandem junction plants, respectively. This recycling process reduces the cost of raw silane by 68 percent, or approximately $22.6 and $79 million per year for a single and tandem 1 GW PV production facility, respectively. The results show environmental benefits of silane recycling centered around a-Si:H-based PV manufacturing plants. Second, an open-source self-replicating rapid prototype or 3-D printer, the RepRap, has the potential to reduce the environmental impact of manufacturing of polymer-based products, using distributed manufacturing paradigm, which is further minimized by the use of PV and improvements in PV manufacturing. Using 3-D printers for manufacturing provides the ability to ultra-customize products and to change fill composition, which increases material efficiency. An LCA was performed on three polymer-based products to determine the CED and GHG from conventional large-scale production and are compared to experimental measurements on a RepRap producing identical products with ABS and PLA. The results of this LCA study indicate that the CED of manufacturing polymer products can possibly be reduced using distributed manufacturing with existing 3-D printers under 89% fill and reduced even further with a solar photovoltaic system. The results indicate that the ability of RepRaps to vary fill has the potential to diminish environmental impact on many products. Third, one additional way to improve the environmental performance of this distributed manufacturing system is to create the polymer filament feedstock for 3-D printers using post-consumer plastic bottles. An LCA was performed on the recycling of high density polyethylene (HDPE) using the RecycleBot. The results of the LCA showed that distributed recycling has a lower CED than the best-case scenario used for centralized recycling. If this process is applied to the HDPE currently recycled in the U.S., more than 100 million MJ of energy could be conserved per annum along with significant reductions in GHG. This presents a novel path to a future of distributed manufacturing suited for both the developed and developing world with reduced environmental impact. From improving manufacturing in the photovoltaic industry with the use of recycling to recycling and manufacturing plastic products within our own homes, each step reduces the impact on the environment. The three coupled projects presented here show a clear potential to reduce the environmental impact of manufacturing and other processes by implementing complimenting systems, which have environmental benefits of their own in order to achieve a compounding effect of reduced CED and GHG.