948 resultados para CRYOGENIC PRESERVATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the design, fabrication and testing of a moving magnet type linear motor of dual piston configuration for a pulse tube cryocooler for ground applications. Eight radially magnetized segmented magnets were used to form one set of a magnet ring. Four magnet rings of such type were constructed, in which one pair of rings has north-pole on its outer diameter and south-pole on inner diameter, while the other pair is it's complementary. The magnets were mounted with opposite poles together on the magnet holder with an axial moving shaft having a piston mounted on both ends of the shaft. The shaft movement was restricted to the axial direction by using C-clamp type flexures, mounted on both sides of the shaft. The force requirement for driving the compressor was calculated based on which the electrical circuit of motor is designed by proper selection of wire gauge and Ampere-turns. The flexure spring force estimation was done through simulation using ANSYS 11.0 and was verified experimentally; while the magnet spring force was determined experimentally. The motor with mounted piston was tested using a variable voltage and variable frequency power supply capable of driving 140 watts of load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A moving magnet linear motor compressor or pressure wave generator (PWG) of 2 cc swept volume with dual opposed piston configuration has been developed to operate miniature pulse tube coolers. Prelimnary experiments yielded only a no-load cold end temperature of 180 K. Auxiliary tests and the interpretation of detailed modeling of a PWG suggest that much of the PV power has been lost in the form of blow-by at piston seals due to large and non-optimum clearance seal gap between piston and cylinder. The results of experimental parameters simulated using Sage provide the optimum seal gap value for maximizing the delivered PV power.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The knowledge of adsorption characteristics of activated carbon (porous material) in the temperature range from 5 to 20 K is essential when used in cryosorption pumps for nuclear fusion applications. However, such experimental data are very scarce in the literature, especially below 77 K. So, an experimental system is designed and fabricated to measure the adsorption characteristics of porous materials under variable cryogenic temperatures (from 5 K to 100 K). This is based on the commercially available micropore-analyser coupled to a closed helium cycle two-stage Gifford McMahon (GM) Cryocooler, which allows the sample to be cooled to 4.2 K. The sample port is coupled to the Cryocooler through a heat switch, which isolates this port from the cold head of the Cryocooler. By this, the sample temperature can now be varied without affecting the Cryocooler. The setup enables adsorption studies in the pressure range from atmospheric down to 10(-4) Pa. The paper describes the details of the experimental setup and presents the results of adsorption studies at 77 K for activated carbon with nitrogen as adsorbate. The system integration is now completed to enable adsorption studies at 4.2 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single and two-stage Pulse Tube Cryocoolers (PTC) have been designed, fabricated and experimentally studied. The single stage PTC reaches a no-load temperature of similar to 29 K at its cold end, the two-stage PTC reaches similar to 2.9 K in its second stage cold end and similar to 60 K in its first stage cold end. The two-stage Pulse Tube Cryocooler provides a cooling power of similar to 250 mW at 4.2 K. The single stage system uses stainless steel meshes along with Pb granules as its regenerator materials, while the two-stage PTC uses combinations of Pb along with Er3Ni/HoCu2 as the second stage regenerator materials. Normally, the above systems are insulated by thermal radiation shields and mounted inside a vacuum chamber which is maintained at high vacuum. To evaluate the performance of these systems in the possible conditions of loss of vacuum with and without radiation shields, experimental studies have been performed. The heat-in-leak under such severe conditions has been estimated from the heat load characteristics of the respective stages. The experimental results are analyzed to obtain surface emissivities and effective thermal conductivities as a function of interspace pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoacoustic engines are energy conversion devices that convert thermal energy from a high-temperature heat source into useful work in the form of acoustic power while diverting waste heat into a cold sink; it can be used as a drive for cryocoolers and refrigerators. Though the devices are simple to fabricate, it is very challenging to design an optimized thermoacoustic primemover with better performance. The study presented here aims to optimize the thermoacoustic primemover using response surface methodology. The influence of stack position and its length, resonator length, plate thickness, and plate spacing on pressure amplitude and frequency in a thermoacoustic primemover is investigated in this study. For the desired frequency of 207 Hz, the optimized value of the above parameters suggested by the response surface methodology has been conducted experimentally, and simulations are also performed using DeltaEC. The experimental and simulation results showed similar output performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermoacoustic prime mover is part of an interesting class of prime movers that can be used to generate clean energy and to drive cryogenic refrigeration systems. A thermoacoustic prime mover has been built based on the linear thermoacoustic model, which consumes thermal energy and produces acoustic energy. The objective of this article is to design a thermoacoustic prime mover that can be used as a drive for a thermoacoustic refrigerator. It is found that stack plate length and its distance from the closed end have a significant effect on the thermal efficiency of the prime mover. For different stack center positions, there is an optimum length of stack plate that has a significant effect on the performance of the thermoacoustic prime mover in terms of temperature gradient, frequency, and pressure amplitude. In this study, the experiments have been done on the thermoacoustic prime mover by varying stack position and its length with constant blockage ratio and resonator length. The results obtained from the experiments have been compared to the theoretical results acquired from DeltaEc Software.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RATIONALE The ratio of the measured abundance of 13C18O bonding CO2 to its stochastic abundance, prescribed by the delta 13C and delta 18O values from a carbonate mineral, is sensitive to its growth temperature. Recently, clumped-isotope thermometry, which uses this ratio, has been adopted as a new tool to elucidate paleotemperatures quantitatively. METHODS Clumped isotopes in CO2 were measured with a small-sector isotope ratio mass spectrometer. CO2 samples digested from several kinds of calcium carbonates by phosphoric acid at 25 degrees C were purified using both cryogenic and gas-chromatographic separations, and their isotopic composition (delta 13C, delta 18O, Delta 47, Delta 48 and Delta 49 values) were then determined using a dual-inlet Delta XP mass spectrometer. RESULTS The internal precisions of the single gas Delta 47 measurements were 0.005 and 0.02 parts per thousand (1 SE) for the optimum and the routine analytical conditions, respectively, which are comparable with those obtained using a MAT 253 mass spectrometer. The long-term variations in the Delta 47 values for the in-house working standard and the heated CO2 gases since 2007 were close to the routine, single gas uncertainty while showing seasonal-like periodicities with a decreasing trend. Unlike the MAT 253, the Delta XP did not show any significant relationship between the Delta 47 and delta 47 values. CONCLUSIONS The Delta XP gave results that were approximately as precise as those of the MAT 253 for clumped-isotope analysis. The temporal stability of the Delta XP seemed to be lower, although an advantage of the Delta XP was that no dependency of delta 47 on Delta 47 was found. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimensional (2D) sheets are currently in the spotlight of nanotechnology owing to high-performance device fabrication possibilities. Building a free-standing quantum sheet with controlled morphology is challenging when large planar geometry and ultranarrow thickness are simultaneously concerned. Coalescence of nanowires into large single-crystalline sheet is a promising approach leading to large, molecularly thick 2D sheets with controlled planar morphology. Here we report on a bottom-up approach to fabricate high-quality ultrathin 2D single crystalline sheets with well-defined rectangular morphology via collective coalescence of PbS nanowires. The ultrathin sheets are strictly rectangular with 1.8 nm thickness, 200-250 nm width, and 3-20 mu m length. The sheets show high electrical conductivity at room and cryogenic temperatures upon device fabrication. Density functional theory (DFT) calculations reveal that a single row of delocalized orbitals of a nanowire is gradually converted into several parallel conduction channels upon sheet formation, which enable superior in-plane carrier conduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Success in the advancement of thermoacoustic field led the researchers to develop the thermoacoustic engines which found its applications in various fields such as refrigeration, gas mixture separation, natural gas liquefaction, and cryogenics. The objective of this study is to design and fabricate the twin thermoacoustic heat engine (TAHE) producing the acoustic waves with high resonance frequencies which is used to drive a thermoacoustic refrigerator efficiently by the influence of geometrical parameters and working fluids. Twin TAHE has gained significant attention due to the production of high intensity acoustic waves than single TAHE. In order to drive an efficient thermoacoustic refrigerator, a twin thermoacoustic heat engine is built up and its performance are analysed by varying the resonator length and working fluid. The performance is measured in terms of onset temperature difference, resonance frequency and pressure amplitude of the oscillations generated from twin TAHE. The simulation is performed using free software DeltaEC, from LANL, USA. The simulated DeltaEC results are compared with experimental results and the deviations are found within +10%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A thermoacoustic refrigerator driven by a thermoacoustic primemover is an effective way to produce durable and long lasting refrigeration due to high reliability, no exotic materials, and no moving parts. Resonator geometry is also one of the important factors that influence the performance of a thermoacoustic prime mover, namely, frequency. Computational fluid dynamics simulation of performance comparison of thermoacoustic prime mover with a straight and tapered resonator is chosen for the present study under an identical stack condition with the air as a working fluid. The frequency and pressure amplitude of oscillations obtained from simulation results were found to be more in the tapered resonator than the straight resonator. Apart from computational fluid dynamics simulation, the simulation studies have also been conducted using design environment for low-amplitude thermoacoustic energy conversion, which predicts the performance of thermoacoustic primemover comparatively well. Simulation results from computational fluid dynamics and design environment for low-amplitude thermoacoustic energy conversion were compared and found to be matching well, representing the good validity of computational fluid dynamics modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoacoustic refrigerator (TAR) converts acoustic waves into heat without any moving parts. The study presented here aims to optimize the parameters like frequency, stack position, stack length, and plate spacing involving in designing TAR using the Response Surface Methodology (RSM). A mathematical model is developed using the RSM based on the results obtained from DeltaEC software. For desired temperature difference of 40 K, optimized parameters suggested by the RSM are the frequency 254 Hz, stack position 0.108 m, stack length 0.08 m, and plate spacing 0.0005 m. The experiments were conducted with optimized parameters and simulations were performed using the Design Environment for Low-amplitude ThermoAcoustic Energy Conversion (DeltaEC) which showed similar results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cryosorption pump is the only solution for pumping helium and hydrogen in fusion reactors. It is chosen because it offers highest pumping speed as well as the only suitable pump for the harsh environments in a tokamak. Towards the development of such cryosorption pumps, the optimal choice of the right activated carbon panels is essential. In order to characterize the performance of the panels with indigenously developed activated carbon, a cryocooler based cryosorption pump with scaled down sizes of panels is experimented. The results are compared with the commercial cryopanel used in a CTI cryosorption (model: Cryotorr 7) pump. The cryopanel is mounted on the cold head of the second stage GM cryocooler which cools the cryopanel down to 11K with first stage reaching about similar to 50K. With no heat load, cryopump gives the ultimate vacuum of 2.1E-7 mbar. The pumping speed of different gases such as nitrogen, argon, hydrogen, helium are tested both on indigenous and commercial cryopanel. These studies serve as a bench mark towards the development of better cryopanels to be cooled by liquid helium for use with tokamak.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The name `Seven Pagodas' has served as a nickname for the south Indian port of Mahabalipuram since the early European explorers used it as landmark for navigation as they could see summits of seven temples from the sea. There are many theories concerning the name Seven Pagodas. The present study has compared coastline and adjacent seven monuments illustrated in a 17th century Portolan Chart (maritime map) with recent remote sensing data. This analysis throws new light on the name ``Seven Pagodas'' for the city. This study has used DEM of the site to simulate the coastline which is similar to the one depicted in the old portolan chart. Through this, the then sea level and corresponding flooding extent according to topography of the area and their effect on monuments could be analyzed. Most importantly this work has in the process identified possibly the seven monuments that constituted the name Seven Pagodas and this provides an alternative explanation to one of the mysteries of history. This work has demonstrated unique method of studying coastal archaeological sites. As large numbers of heritage sites around the world are on coastlines, this methodology has potential to be very useful for coastal heritage preservation and management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present here, an experimental set-up developed for the first time in India for the determination of mixing ratio and carbon isotopic ratio of air-CO2. The set-up includes traps for collection and extraction of CO2 from air samples using cryogenic procedures, followed by the measurement of CO2 mixing ratio using an MKS Baratron gauge and analysis of isotopic ratios using the dual inlet peripheral of a high sensitivity isotope ratio mass spectrometer (IRMS) MAT 253. The internal reproducibility (precision) for the PC measurement is established based on repeat analyses of CO2 +/- 0.03 parts per thousand. The set-up is calibrated with international carbonate and air-CO2 standards. An in-house air-CO2 mixture, `OASIS AIRMIX' is prepared mixing CO2 from a high purity cylinder with O-2 and N-2 and an aliquot of this mixture is routinely analyzed together with the air samples. The external reproducibility for the measurement of the CO2 mixing ratio and carbon isotopic ratios are +/- 7 (n = 169) mu mol.mol(-1) and +/- 0.05 (n = 169) parts per thousand based on the mean of the difference between two aliquots of reference air mixture analyzed during daily operation carried out during November 2009-December 2011. The correction due to the isobaric interference of N2O on air-CO2 samples is determined separately by analyzing mixture of CO2 (of known isotopic composition) and N2O in varying proportions. A +0.2 parts per thousand correction in the delta C-13 value for a N2O concentration of 329 ppb is determined. As an application, we present results from an experiment conducted during solar eclipse of 2010. The isotopic ratio in CO2 and the carbon dioxide mixing ratio in the air samples collected during the event are different from neighbouring samples, suggesting the role of atmospheric inversion in trapping the emitted CO2 from the urban atmosphere during the eclipse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoacoustics is the interaction between heat and sound, which are useful in designing heat engines and heat pumps. Research in the field of thermoacoustics focuses on the demand to improve the performance which is achieved by altering operational, geometrical and fluid parameters. The present study deals with improving the performance of twin thermoacoustic prime mover, which has gained the significant importance in the recent years for the production of high amplitude sound waves. The performance of twin thermoacoustic prime mover is evaluated in terms of onset temperature difference, resonance frequency and pressure amplitude of the acoustic waves by varying the resonator length and charge pressures of fluid medium nitrogen. DeltaEC, the free simulation software developed by LANL, USA is employed in the present study to simulate the performance of twin thermoacoustic prime mover. Experimental and simulated results are compared and the deviation is found to be within 10%.