958 resultados para COLLOIDAL CRYSTALS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The single scattering albedo w_0l in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength l and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio w_0l(r)/w_0l(r0) of two single scattering albedo spectra is a linear function of w_0l(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum w_0l(r) via one known spectrum w_0l(r0). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal engineering principles were used to design three new co-crystals of paracetamol. A variety of potential cocrystal formers were initially identified from a search of the Cambridge Structural Database for molecules with complementary hydrogen-bond forming functionalities. Subsequent screening by powder X-ray diffraction of the products of the reaction of this library of molecules with paracetamol led to the discovery of new binary crystalline phases of paracetamol with trans-1,4- diaminocyclohexane (1); trans-1,4-di(4-pyridyl)ethylene (2); and 1,2-bis(4-pyridyl)ethane (3). The co-crystals were characterized by IR spectroscopy, differential scanning calorimetry, and 1H NMR spectroscopy. Single crystal X-ray structure analysis reveals that in all three co-crystals the co-crystal formers (CCF) are hydrogen bonded to the paracetamol molecules through O−H···N interactions. In co-crystals (1) and (2) the CCFs are interleaved between the chains of paracetamol molecules, while in co-crystal (3) there is an additional N−H···N hydrogen bond between the two components. A hierarchy of hydrogen bond formation is observed in which the best donor in the system, the phenolic O−H group of paracetamol, is preferentially hydrogen bonded to the best acceptor, the basic nitrogen atom of the co-crystal former. The geometric aspects of the hydrogen bonds in co-crystals 1−3 are discussed in terms of their electrostatic and charge-transfer components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modelling of disorder in organic crystals is highly desirable since it would allow thermodynamic stabilities and other disorder-sensitive properties to be estimated for such systems. Two disordered organic molecular systems are modeled using a symmetry-adapted ensemble approach, in which the disordered system is treated as an ensemble of the configurations of a supercell with respect to substitution of one disorder component for another. Computation time is kept manageable by performing calculations only on the symmetrically inequivalent configurations. Calculations are presented on a substitutionally disordered system, the dichloro/dibromobenzene solid solution, and on an orientationally disordered system, eniluracil, and the resultant free energies, disorder patterns, and system properties are discussed. The results are found to be in agreement with experiment following manual removal of physically implausible configurations from ensemble averages, highlighting the dangers of a completely automated approach to organic crystal thermodynamics which ignores the barriers to equilibration once the crystal has been formed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of a ferrofluid under the influence of an external magnetic field is expected to become anisotropic due to the alignment of the dipoles into the direction of the external field, and subsequently to the formation of particle chains due to the attractive head to tail orientations of the ferrofluid particles. Knowledge about the structure of a colloidal ferrofluid can be inferred from scattering data via the measurement of structure factors. We have used molecular-dynamics simulations to investigate the structure of both monodispersed and polydispersed ferrofluids. The results for the isotropic structure factor for monodispersed samples are similar to previous data by Camp and Patey that were obtained using an alternative Monte Carlo simulation technique, but in a different parameter region. Here we look in addition at bidispersed samples and compute the anisotropic structure factor by projecting the q vector onto the XY and XZ planes separately, when the magnetic field was applied along the z axis. We observe that the XY- plane structure factor as well as the pair distribution functions are quite different from those obtained for the XZ plane. Further, the two- dimensional structure factor patterns are investigated for both monodispersed and bidispersed samples under different conditions. In addition, we look at the scaling exponents of structure factors. Our results should be of value to interpret scattering data on ferrofluids obtained under the influence of an external field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consideration of the geometrical features of the functional groups present in furosemide has enabled synthesis of a series of ternary co-crystals with predictable structural features, containing a robust asymmetric two-dimensional network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dual-polarisation radar measurements provide valuable information about the shapes and orientations of atmospheric ice particles. For quantitative interpretation of these data in the Rayleigh regime, common practice is to approximate the true ice crystal shape with that of a spheroid. Calculations using the discrete dipole approximation for a wide range of crystal aspect ratios demonstrate that approximating hexagonal plates as spheroids leads to significant errors in the predicted differential reflectivity, by as much as 1.5 dB. An empirical modification of the shape factors in Gans's spheroid theory was made using the numerical data. The resulting simple expressions, like Gans's theory, can be applied to crystals in any desired orientation, illuminated by an arbitrarily polarised wave, but are much more accurate for hexagonal particles. Calculations of the scattering from more complex branched and dendritic crystals indicate that these may be accurately modelled using the new expression, but with a reduced permittivity dependent on the volume of ice relative to an enclosing hexagonal prism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl–DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following previous studies, the aim of this work is to further investigate the application of colloidal gas aphrons (CGA) to the recovery of polyphenols from a grape marc ethanolic extract with particular focus on exploring the use of a non-ionic food grade surfactant (Tween 20) as an alternative to the more toxic cationic surfactant CTAB. Different batch separation trials in a flotation column were carried out to evaluate the influence of surfactant type and concentration and processing parameters (such as pH, drainage time, CGA/extract volumetric and molar ratio) on the recovery of total and specific phenolic compounds. The possibility of achieving selective separation and concentration of different classes of phenolic compounds and non-phenolic compounds was also assessed, together with the influence of the process on the antioxidant capacity of the recovered compounds. The process led to good recovery, limited loss of antioxidant capacity, but low selectivity under the tested conditions. Results showed the possibility of using Tween 20 with a separation mechanism mainly driven by hydrophobic interactions. Volumetric ratio rather than the molar ratio was the key operating parameter in the recovery of polyphenols by CGA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a worldwide interest in the development of processes for producing colorants from natural sources. Microorganisms provide an alternative source of natural colorants produced by cultivation technology and extracted from the fermented broth. The aim of the present work was to study the recovery of red colorants from the fermented broth of Talaromyces amestolkiae using the technique of colloidal gas aphrons (CGA) comprising surfactant-stabilized microbubbles. Preliminary experiments were performed to evaluate the red colorants’ solubility in different organic solvents, octanol/water partitioning, and their stability in surfactant solutions, namely hexadecyl trimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and polyoxyethylenesorbitan monolaurate (Tween 20), which are cationic, anionic and nonionic surfactants, respectively. The first recovery experiments were carried out using CGA generated by these surfactants at different volumetric ratios (VR, 3–18). Subsequently, two different approaches to generate CGA were investigated at VR values of 6 and 12: the first involved the use of CTAB at pH 6.9–10.0, and the second involved the use of Tween 20 using red colorants partially dissolved in ethanol and Tween 20. The characterization results showed that red colorants have a hydrophilic nature. The highest recoveries were obtained with Tween 20 (78%) and CTAB (70%). These results demonstrated that the recovery of the colorants was driven by both electrostatic and hydrophobic interactions. The VR was found to be an important operating parameter and at VR 12 with CTAB (at pH 9) maximum recovery, partitioning coefficient (K = 5.39) and selectivity in relation to protein and sugar (SP = 3.75 and SS = 7.20 respectively) were achieved. Furthermore, with Tween 20, the separation was driven mainly by hydrophobic interactions. Overall CGA show promise for the recovery of red colorants from a fermented broth. Although better results were obtained with CTAB than with Tween 20 the latter may be more suitable for some application due to its lower toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite difference technique, based on a projection method, is developed for solving the dynamic three-dimensional Ericksen-Leslie equations for nematic liquid crystals subject to a strong magnetic field. The governing equations in this situation are derived using primitive variables and are solved using the ideas behind the GENSMAC methodology (Tome and McKee [32]; Tome et al. [34]). The resulting numerical technique is then validated by comparing the numerical solution against an analytic solution for steady three-dimensional flow between two-parallel plates subject to a strong magnetic field. The validated code is then employed to solve channel flow for which there is no analytic solution. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of the electrical impedance of an electrolytic cell in the shape of a slab is performed. We have solved, numerically, the differential equations governing the phenomenon of the redistribution of the ions in the presence of an external electric field, and compared the results with the ones obtained by solving the linear approximation of these equations. The control parameters in our study are the amplitude and the frequency of the applied voltage, assumed a simple harmonic function of the time. We show that for the large amplitudes of the applied voltage, the actual current is no longer harmonic at low frequencies. From this result it follows that the concept of electrical impedance of a cell is a useful quantity only in the case where the linear approximation of the fundamental equations of problem work well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work is to study the potentialities of phase-shifting real-time holographic interferometry for the analysis of light-induced lens in photoreffactive and nonlinear optical materials. We show that this technique can be used for quantitative evaluation of the phase distribution of a wavefront changed by a light-induced lens and, consequently, the refractive index changes in these materials. The basic principle of this technique combines real-time holographic interferometry with phase-shifting technique for interferogram analysis. This method is demonstrated with in situ visualization, monitoring and analysis in real-time and uses a Bi(12)SiO(20) crystal as the holographic medium and a Bi(12)TiO(20) as the test sample. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed a systematic study of the time and temperature dependencies of the electrical resistivity (rho(T, t)) inNd(0.5)Ca(0.5)Mn(1-x)Cr(x)O(3) single crystals with x = 0.02 and 0.07 in order to examine the dynamics of the phase separation. The relaxation effects can be described by the combination of a rapid exponential increase/decrease with a slower logarithmic contribution at longer times. The experimental results suggest the existence of a large temperature window in which huge relaxation effects occur, and the relative fraction of the coexisting phases rapidly changes as a function of time, depending on the initial magnetic state of the sample. The rho(T, t) relaxation measurements were shown to be a suitable tool for probing the dynamical nature of the phase separation, in which magnetically distinct phases compete against each other in a wide temperature range. In addition, the features observed in the rho(T, t) curves were found to be in excellent agreement with both the magnetic properties and the structural transitions observed in these manganites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defects are usually present in organic polymer films and are commonly invoked to explain the low efficiency obtained in organic-based optoelectronic devices. We propose that controlled insertion of substitutional impurities may, on the contrary, tune the optoelectronic properties of the underivatized organic material and, in the case studied here, maximize the efficiency of a solar cell. We investigate a specific oxygen-impurity substitution, the keto-defect -(CH(2)-C=O)- in underivatized crystalline poly(p-phenylenevinylene) (PPV), and its impact on the electronic structure of the bulk film, through a combined classical (force-field) and quantum mechanical (DFT) approach. We find defect states which suggest a spontaneous electron hole separation typical of a donor acceptor interface, optimal for photovoltaic devices. Furthermore, the inclusion of oxygen impurities does not introduce defect states in the gap and thus, contrary to standard donor-acceptor systems, should preserve the intrinsic high open circuit voltage (V(oc)) that may be extracted from PPV-based devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural and electronic properties of perylene diimide liquid crystal PPEEB are studied using ab initio methods based on the density functional theory (I)FT). Using available experimental crystallographic data as a guide, we propose a detailed structural model for the packing of solid PPEEB. We find that due to the localized nature of the band edge wave function, theoretical approaches beyond the standard method, such as hybrid functional (PBE0), are required to correctly characterize the band structure of this material. Moreover, unlike previous assumptions, we observe the formation of hydrogen bonds between the side chains of different molecules, which leads to a dispersion of the energy levels. This result indicates that the side chains of the molecular crystal not only are responsible for its structural conformation but also can be used for tuning the electronic and optical properties of these materials.