964 resultados para CARBON-CONTAINING CASTABLES
Resumo:
Soils constructed after mining often have low carbon (C) stocks and low quality of organic matter (OM). Cover crops are decisive for the recovery process of these stocks, improving the quality of constructed soils. Therefore, the goal of this study was to evaluate the effect of cover crops on total organic C (TOC) stocks, C distribution in physical fractions of OM and the C management index (CMI) of a soil constructed after coal mining. The experiment was initiated in 2003 with six treatments: Hemarthria altissima (T1), Paspalum notatum (T2), Cynodon dactylon (T3), Urochloa brizantha (T4), bare constructed soil (T5), and natural soil (T6). Soil samples were collected in 2009 from the 0.00-0.03 m layer, and the TOC and C stocks in the physical particle size fractions (carbon in the coarse fraction - CCF, and mineral-associated carbon - MAC) and density fractions (free light fraction - FLF; occluded light fraction - OLF, and heavy fraction - HF) of OM were determined. The CMI components: carbon pool index (CPI), lability (L) and lability index (LI) were estimated by both fractionation methods. No differences were observed between TOC, CCF and MAC stocks. The lowest C stocks in FLF and OLF fractions were presented by T2, 0.86 and 0.61 Mg ha-1, respectively. The values of TOC stock, C stock in physical fractions and CMI were intermediate, greater than T5 and lower than T6 in all treatments, indicating the partial recovery of soil quality. As a result of the better adaptation of the species Hemarthria and Brizantha, resulting in greater accumulation of labile organic material, the CPI, L, LI and CMI values were higher in these treatments, suggesting a greater potential of these species for recovery of constructed soils.
Resumo:
The use of pig slurry (PS) as fertilizer can affect the soil quality and increase total stocks of soil organic carbon (TOC). However, the effects of PS on TOC amount and forms in the soil are not fully understood, particularly in areas under no-tillage (NT). The purpose of this study was to determine TOC contents and stocks in the particulate (POC) and mineral-associated C fractions (MAC) of an Oxisol after nine years of maize-oat rotation under NT, with annual applications of PS, soluble fertilizer and combined fertilization (pig slurry + soluble fertilizer). The experiment was initiated in 2001 in Campos Novos, Santa Catarina, with the following treatments: PS at rates of 0 (without fertilization - PS0); 25 (PS25); 50 (PS50); 100 (PS100); and 200 m3 ha-1yr-1 (PS200); fertilization with soluble fertilizer (SF); and mixed fertilization (PS + SF). The TOC content was determined in samples of six soil layers to a depth of 40 cm, and the POC and MAC contents in four layers to a depth of 20 cm. From the rate of 50 m3 ha-1yr-1 and upwards, the soil TOC content and stock increased according to the PS rates in the layers to a depth of 10 cm. The POC and MAC contents and stocks were higher in the surface layers, with a clear predominance of the second fraction, but a greater relative amplitude in the contents of the first fraction.
Resumo:
ABSTRACT Rubber tree (Hevea brasiliensis) crop may accumulate significant amounts of carbon either in biomass or in the soil. However, a comprehensive understanding of the potential of the C stock among different rubber tree clones is still distant, since clones are typically developed to exhibit other traits, such as better yield and disease tolerance. Thus, the aim of this study was to address differences among different areas planted to rubber clones. We hypothesized that different rubber tree clones, developed to adapt to different environmental and biological constrains, diverge in terms of soil and plant biomass C stocks. Clones were compared in respect to soil C stocks at four soil depths and the total depth (0.00-0.05, 0.05-0.10, 0.10-0.20, 0.20-0.40, and 0.00-0.40 m), and in the different compartments of the tree biomass. Five different plantings of rubber clones (FX3864, FDR 5788, PMB 1, MDX 624, and CDC 312) of seven years of age were compared, which were established in a randomized block design in the experimental field in Rio de Janeiro State. No difference was observed among plantings of rubber tree clones in regard to soil C stocks, even considering the total stock from 0.00-0.40 m depth. However, the rubber tree clones were different from each other in terms of total plant C stocks, and this contrast was predominately due to only one component of the total C stock, tree biomass. For biomass C stock, the MDX 624 rubber tree clone was superior to other clones, and the stem was the biomass component which most accounted for total C biomass. The contrast among rubber clones in terms of C stock is mainly due to the biomass C stock; the aboveground (tree biomass) and the belowground (soil) compartments contributed differently to the total C stock, 36.2 and 63.8 %, respectively. Rubber trees did not differ in relation to C stocks in the soil, but the right choice of a rubber clone is a reliable approach for sequestering C from the air in the biomass of trees.
Resumo:
ABSTRACT The combined incorporation of sewage sludge (SS) and oat straw (OS) to the soil can increase straw carbon mineralization and microbial nitrogen immobilization. This hypothesis was tested in two laboratory experiments, in which SS was incorporated in the soil with and without OS. One treatment in which only straw was incorporated and a control with only soil were also evaluated. The release of CO2 and mineral N in the soil after organic material incorporation was evaluated for 110 days. The cumulative C mineralization reached 30.1 % for SS and 54.7 % for OS. When these organic materials were incorporated together in the soil, straw C mineralization was not altered. About 60 % of organic N in the SS was mineralized after 110 days. This N mineralization index was twice as high as that defined by Resolution 375/2006 of the National Environmental Council. The combined incorporation of SS and OS in the soil caused an immobilization of microbial N of 5.9 kg Mg-1 of OS (mean 3.5 kg Mg-1). The results of this study indicated that SS did not increase straw C mineralization, but the SS rate should be adjusted to compensate for the microbial N immobilization caused by straw.
Resumo:
ABSTRACT Soil organic matter (SOM) plays a key role in maintaining the productivity of tropical soils, providing energy and substrate for the biological activity and modifying the physical and chemical characteristics that ensure the maintenance of soil quality and the sustainability of ecosystems. This study assessed the medium-term effect (six years) of the application of five organic composts, produced by combining different agro-industrial residues, on accumulation and chemical characteristics of soil organic matter. Treatments were applied in a long-term experiment of organic management of mango (OMM) initiated in 2005 with a randomized block design with four replications. Two external areas, one with conventional mango cultivation (CMM) and the other a fragment of regenerating Caatinga vegetation (RCF), were used as reference areas. Soil samples were collected in the three management systems from the 0.00-0.05, 0.05-0.10, and 0.10-0.20 m layers, and the total organic carbon content and chemical fractions of organic matter were evaluated by determining the C contents of humin and humic and fulvic acids. Organic compost application significantly increased the contents of total C and C in humic substances in the experimental plots, mainly in the surface layer. However, compost 3 (50 % coconut bagasse, 40 % goat manure, 10 % castor bean residues) significantly increased the level of the non-humic fraction, probably due to the higher contents of recalcitrant material in the initial composition. The highest increases from application of the composts were in the humin, followed by the fulvic fraction. Compost application increased the proportion of higher molecular weight components, indicating higher stability of the organic matter.
Resumo:
ABSTRACT The cultivation of cover crops intercropped with fruit trees is an alternative to maintain mulch cover between plant rows and increase soil organic carbon (C) stocks. The objective of this study was to evaluate changes in soil total organic C content and labile organic matter fractions in response to cover crop cultivation in an orange orchard. The experiment was performed in the state of Bahia, in a citrus orchard with cultivar ‘Pera’ orange (Citrus sinensis) at a spacing of 6 × 4 m. A randomized complete block design with three replications was used. The following species were used as cover crops: Brachiaria (Brachiaria decumbes) – BRAQ, pearl millet (Pennisetum glaucum) – MIL, jack bean (Canavalia ensiformis) – JB, blend (50 % each) of jack bean + millet (JB/MIL), and spontaneous vegetation (SPV). The cover crops were broadcast-seeded between the rows of orange trees and mechanically mowed after flowering. Soil sampling at depths of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m was performed in small soil trenches. The total soil organic C (SOC) content, light fraction (LF), and the particulate organic C (POC), and oxidizable organic C fractions were estimated. Total soil organic C content was not significantly changed by the cover crops, indicating low sensitivity in reacting to recent changes in soil organic matter due to management practices. Grasses enabled a greater accumulation of SOC stocks in 0.00-0.40 m compared to all other treatments. Jack bean cultivation increased LF and the most labile oxidizable organic C fraction (F1) in the soil surface and the deepest layer tested. Cover crop cultivation increased labile C in the 0.00-0.10 m layer, which can enhance soil microbial activity and nutrient absorption by the citrus trees. The fractions LF and F1 may be suitable indicators for monitoring changes in soil organic matter content due to changes in soil management practices.
Resumo:
ABSTRACT Changes in carbon stocks in different compartments of soil organic matter of a clayey Latossolo Vermelho Distrófico (Typic Haplustox), caused by the substitution of native savanna vegetation (cerrado sensu stricto) by agroecosystems, were assessed after 31 years of cultivation. Under native vegetation, a stock of 164.5 Mg ha-1 C was estimated in the 0.00-1.00 m layer. After 31 years of cultivation, these changes in soil C stocks were detected to a depth of 0.60 m. In the case of substitution of cerrado sensu stricto by no-tillage soybean-corn rotation, a reduction of at least 11 % of the soil C pools was observed. However, the adoption of no-tillage as an alternative to tillage with a moldboard plow (conventional system) reduced CO2 emissions by up to 12 %.
Resumo:
ABSTRACT Tillage systems can influence C sequestration by changing aggregate formation and C distribution within the aggregate. This study was undertaken to explore the impact of no-tillage without straw (NT-S) and with straw (NT+S), and moldboard plow without straw (MP-S) and with straw (MP+S), on soil aggregation and aggregate-associated C after six years of double rice planting in a Hydragric Anthrosol in Guangxi, southwest of China. Soil samples of 0.00-0.05, 0.05-0.20 and 0.20-0.30 m layers were wet-sieved and divided into four aggregate-size classes, >2 mm, 2.00-0.25 mm, 0.25-0.053 and <0.053 mm, respectively, for measuring aggregate associated C and humic and fulvic acids. Results showed that the soil organic carbon (SOC) stock in bulk soil was 40.2-51.1 % higher in the 0.00-0.05 m layer and 11.3-17.0 % lower in the 0.05-0.20 m layer in NT system (NT+S and NT-S) compared to the MP system (MP+S and MP-S), respectively. However, no statistical difference was found across the whole 0.00-0.30 m layer. The NT system increased the proportion of >2 mm aggregate fraction and reduced the proportion of <0.053 mm aggregates in both 0.00-0.05 and 0.05-0.20 m layers. The SOC concentration, SOC stock and humic and fulvic acids within the >0.25 mm macroaggregate fraction also significantly increased in the 0.00-0.5 m layer in NT system. However, those within the 2.00-0.25 mm aggregate fraction were significantly reduced in the 0.05-0.200 m layer under NT system. Straw incorporation increased not only the SOC stock in bulk soil, but also the proportion of macroaggregate, aggregate associated with SOC and humic and fulvic acids concentration within the aggregate. The effect of straw on C sequestration might be dependent on the location of straw incorporation. In conclusion, the NT system increased the total SOC accumulation and humic and fulvic acids within macroaggregates, thus contributing to C sequestration in the 0.00-0.05 m layer.
Resumo:
Fly ash was used in this evaluation study to replace 15% of the cement in Class C-3 concrete paving mixes. One Class "c" ash from Iowa approved sources was examined in each mix. Substitution rate was based on 1 to 1 basis, for each pound of cement removed 1.0 pound of ash was added. The freeze/thaw durability of the concrete studied was not adversely affected by the presence of fly ash. This study reveals that the durability of the concrete test specimens made with Class II durability aggregates was slightly increased in all cases by the substitution of cement with 15% Class "c" fly ash. In all cases durability factors either remained the same or slightly improved except for one case where the durability factor decreased from 36 to 34. The expansion decreased in all cases.
Resumo:
PURPOSE: To analyze in vivo the function of chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C (gene symbol: Cspg5) during retinal degeneration in the Rpe65⁻/⁻ mouse model of Leber congenital amaurosis. METHODS: We resorted to mice with targeted deletions in the Cspg5 and retinal pigment epithelium protein of 65 kDa (Rpe65) genes (Cspg5⁻/⁻/Rpe65⁻/⁻). Cone degeneration was assessed with cone-specific peanut agglutinin staining. Transcriptional expression of rhodopsin (Rho), S-opsin (Opn1sw), M-opsin (Opn1mw), rod transducin α subunit (Gnat1), and cone transducin α subunit (Gnat2) genes was assessed with quantitative PCR from 2 weeks to 12 months. The retinal pigment epithelium (RPE) was analyzed at P14 with immunodetection of the retinol-binding protein membrane receptor Stra6. RESULTS: No differences in the progression of retinal degeneration were observed between the Rpe65⁻/⁻ and Cspg5⁻/⁻/Rpe65⁻/⁻ mice. No retinal phenotype was detected in the late postnatal and adult Cspg5⁻/⁻ mice, when compared to the wild-type mice. CONCLUSIONS: Despite the previously reported upregulation of Cspg5 during retinal degeneration in Rpe65⁻/⁻ mice, no protective effect or any involvement of Cspg5 in disease progression was identified.
Resumo:
Adiponutrin (PNPLA3) is a predominantly liver-expressed transmembrane protein with phospholipase activity that is regulated by fasting and feeding. Recent genome-wide association studies identified PNPLA3 to be associated with hepatic fat content and liver function, thus pointing to a possible involvement in the hepatic lipoprotein metabolism. The aim of this study was to examine the association between two common variants in the adiponutrin gene and parameters of lipoprotein metabolism in 23,274 participants from eight independent West-Eurasian study populations including six population-based studies [Bruneck (n = 800), KORA S3/F3 (n = 1644), KORA S4/F4 (n = 1814), CoLaus (n = 5435), SHIP (n = 4012), Rotterdam (n = 5967)], the SAPHIR Study as a healthy working population (n = 1738) and the Utah Obesity Case-Control Study including a group of 1037 severely obese individuals (average BMI 46 kg/m2) and 827 controls from the same geographical region of Utah. We observed a strong additive association of a common non-synonymous variant within adiponutrin (rs738409) with age-, gender-, and alanine-aminotransferase-adjusted lipoprotein concentrations: each copy of the minor allele decreased levels of total cholesterol on average by 2.43 mg/dl (P = 8.87 x 10(-7)), non-HDL cholesterol levels by 2.35 mg/dl (P = 2.27 x 10(-6)) and LDL cholesterol levels by 1.48 mg/dl (P = 7.99 x 10(-4)). These associations remained significant after correction for multiple testing. We did not observe clear evidence for associations with HDL cholesterol or triglyceride concentrations. In conclusion, our study suggests that adiponutrin is involved in the metabolism of apoB-containing lipoproteins.
Resumo:
Profiles of carbon isotopes were studied in marine limestones of Late Permian and Early Triassic age of the Tethyan region from 20 sections in Yugoslavia, Greece, Turkey, Armenian SSR, Iran, Pakistan, India, Nepal, and China. The Upper Permian sections continue the high positive values of 13C previously found in Upper Permian basins in NW Europe and western USA. In the more complete sections of Tethys it can now be demonstrated that the values of 13C drop from the Murgabian to the Dzhulfian Stages of the Upper Permian, then sharply to values near zero during the last two biozones of the Dorashamian. These levels of 13C sample the Tethys Sea and the world ocean, and equal values from deep-water sediments at Salamis Greece indicate that they apply to the whole water column. We hypothesize that the high values of 13C are a consequence of Late Paleozoic storage of organic carbon, and that the declines represent an episodic cessation of this organic deposition, and partial oxidation of the organic reservoir, extending over a period of several million years. The carbon isotope profile may reflect parallel complexity in the pattern of mass extinction in Late Permian time. Des profils isotopiques du carbone ont été établis dans des calcaires marins d'âge tardi-permien à éo-triasique répartis dans 20 endroits du domaine téthysien: Yougoslavie, Grèce, Turquie, République d'Arménie, Iran, Pakistan, Inde, Népal et Chine. Les profils établis dans le Permien supérieur montrent les mêmes valeurs positives de 13C observées antérieurement dans des bassins de même âge en Europe occidentale et dans l'ouest des USA. Dans les profils les plus complets de la Téthys, il est maintenant établi que les valeurs de 13C décroissent depuis le Murgabien jusqu'au Dzhulfien (Permien supérieur) pour devenir proches de zéro dans les deux dernières biozones du Dorasharmen. Ces valeurs de 13C sont caractéristiques de la Téthys et de l'Océan mondial; elles s'appliquent à toutes les profondeurs d'eau, comme en témoignent les valeurs fournies par des sédiments de mer profonde à Salamis (Grèce). Nous formulons l'hypothèse que les hautes valeurs de 13C sont la conséquence du stockage du carbone organique au Paléozoïque supérieur et que leur décroissance traduit un arrêt épisodique de cette sédimentation organique, accompagné d'une oxydation partielle de la matière organique s'étendant sur une période de plusieurs Ma. L'influence parallèle des phénomènes d'extinction massive à le fin du Permien se refléterait également dans les profils isotopiques du carbone.
Resumo:
The stable carbon and oxygen isotope compositions of fossil ostracods are powerful tools to estimate past environmental and climatic conditions. The basis for such interpretations is that the calcite of the valves reflects the isotopic composition of water and its temperature of formation. However, calcite of ostracods is known not to form in isotopic equilibrium with water and different species may have different offsets from inorganic precipitates of calcite formed under the same conditions. To estimate the fractionation during ostracod valve calcification, the oxygen and carbon isotope compositions of 15 species living in Lake Geneva were related to their autoecology and the environmental parameters measured during their growth. The results indicate that: (1) Oxygen isotope fractionation is similar for all species of Candoninae with an enrichment in 18O of more than 30/00 relative to equilibrium values for inorganic calcite. Oxygen isotope fractionation for Cytheroidea is less discriminative relative to the heavy oxygen, with enrichments in 18O for these species of 1.7 to 2.30/00. Oxygen isotope fractionations for Cyprididae are in-between those of Candoninae and Cytheroidea. The difference in oxygen isotope fractionation between ostracods and inorganic calcite has been interpreted as resulting from a vital effect. (2) Comparison with previous work suggests that oxygen isotope fractionation may depend on the total and relative ion content of water. (3) Carbon isotope compositions of ostracod valves are generally in equilibrium with DIC. The specimens' δ13C values are mainly controlled by seasonal variations in δ13CDIC of bottom water or variation thereof in sediment pore water. (4) Incomplete valve calcification has an effect on carbon and oxygen isotope compositions of ostracod valves. Preferential incorporation of at the beginning of valve calcification may explain this effect. (5) Results presented here as well as results from synthetic carbonate growth indicate that different growth rates or low pH within the calcification site cannot be the cause of oxygen isotope 'vital effects' in ostracods. Two mechanisms that might enrich the 18O of ostracod valves are deprotonation of that may also contribute to valve calcification, and effects comparable to salt effects with high concentrations of Ca and/or Mg within the calcification site that may also cause a higher temperature dependency of oxygen isotope fractionation.
Resumo:
Carbon isotope ratio (CIR) analysis has been routinely and successfully applied to doping control analysis for many years to uncover the misuse of endogenous steroids such as testosterone. Over the years, several challenges and limitations of this approach became apparent, e.g., the influence of inadequate chromatographic separation on CIR values or the emergence of steroid preparations comprising identical CIRs as endogenous steroids. While the latter has been addressed recently by the implementation of hydrogen isotope ratios (HIR), an improved sample preparation for CIR avoiding co-eluting compounds is presented herein together with newly established reference values of those endogenous steroids being relevant for doping controls. From the fraction of glucuronidated steroids 5β-pregnane-3α,20α-diol, 5α-androst-16-en-3α-ol, 3α-Hydroxy-5β-androstane-11,17-dione, 3α-hydroxy-5α-androstan-17-one (ANDRO), 3α-hydroxy-5β-androstan-17-one (ETIO), 3β-hydroxy-androst-5-en-17-one (DHEA), 5α- and 5β-androstane-3α,17β-diol (5aDIOL and 5bDIOL), 17β-hydroxy-androst-4-en-3-one and 17α-hydroxy-androst-4-en-3-one were included. In addition, sulfate conjugates of ANDRO, ETIO, DHEA, 3β-hydroxy-5α-androstan-17-one plus 17α- and androst-5-ene-3β,17β-diol were considered and analyzed after acidic solvolysis. The results obtained for the reference population encompassing n = 67 males and females confirmed earlier findings regarding factors influencing endogenous CIR. Variations in sample preparation influenced CIR measurements especially for 5aDIOL and 5bDIOL, the most valuable steroidal analytes for the detection of testosterone misuse. Earlier investigations on the HIR of the same reference population enabled the evaluation of combined measurements of CIR and HIR and its usefulness regarding both steroid metabolism studies and doping control analysis. The combination of both stable isotopes would allow for lower reference limits providing the same statistical power and certainty to distinguish between the endo- or exogenous origin of a urinary steroid.