996 resultados para CARBON AND NITROGEN NUTRIENTS
Resumo:
Chitosan permeabilizes plasma membrane and kills sensitive filamentous fungi and yeast. Membrane fluidity and cell energy determine chitosan sensitivity in fungi. A five-fold reduction of both glucose (main carbon (C) source) and nitrogen (N) increased 2-fold Neurospora crassa sensitivity to chitosan. We linked this increase with production of intracellular reactive oxygen species (ROS) and plasma membrane permeabilization. Releasing N. crassa from nutrient limitation reduced chitosan antifungal activity in spite of high ROS intracellular levels. With lactate instead of glucose, C and N limitation increased N. crassa sensitivity to chitosan further (4-fold) than what glucose did. Nutrient limitation also increased sensitivity of filamentous fungi and yeast human pathogens to chitosan. For Fusarium proliferatum, lowering 100-fold C and N content in the growth medium, increased 16-fold chitosan sensitivity. Similar results were found for Candida spp. (including fluconazole resistant strains) and Cryptococcus spp. Severe C and N limitation increased chitosan antifungal activity for all pathogens tested. Chitosan at 100 μg ml-1 was lethal for most fungal human pathogens tested but non-toxic to HEK293 and COS7 mammalian cell lines. Besides, chitosan increased 90% survival of Galleria mellonella larvae infected with C. albicans. These results are of paramount for developing chitosan as antifungal.
Resumo:
Sediment samples were obtained for detailed Adenosine 5'-Triphosphate (ATP) analysis down to 57.8 m below the seafloor (mbsf). The samples were also analyzed for particle-size distribution, calcium carbonate (CaCO3), organic carbon, and total nitrogen. The concentrations of ATP ranged between 360 and 7050 pg/g (dry weight sediment), which agree well with a limited number of direct bacteria counts. Principal component analyses show that 63% of the total variance can be accounted for by the first two principal components. The concentration of ATP (bacterial numbers by inference) is virtually independent of the concentration of sedimentary organic carbon, but correlates with CaCO3 and coarse particles.