949 resultados para Burning emissions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elemental carbon (EC) or black carbon (BC) in the atmosphere has a strong influence on both climate and human health. In this study, radiocarbon (14C) based source apportionment is used to distinguish between fossil fuel and biomass burning sources of EC isolated from aerosol filter samples collected in Beijing from June 2010 to May 2011. The 14C results demonstrate that EC is consistently dominated by fossil-fuel combustion throughout the whole year with a mean contribution of 79% ± 6% (ranging from 70% to 91%), though EC has a higher mean and peak concentrations in the cold season. The seasonal molecular pattern of hopanes (i.e., a class of organic markers mainly emitted during the combustion of different fossil fuels) indicates that traffic-related emissions are the most important fossil source in the warm period and coal combustion emissions are significantly increased in the cold season. By combining 14C based source apportionment results and picene (i.e., an organic marker for coal emissions) concentrations, relative contributions from coal (mainly from residential bituminous coal) and vehicle to EC in the cold period were estimated as 25 ± 4% and 50 ± 7%, respectively, whereas the coal combustion contribution was negligible or very small in the warm period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70% of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20%in winter and 40%in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire regimes have changed during the Holocene due to changes in climate, vegetation, and in human practices. Here, we hypothesise that changes in fire regime may have affected the global CO2 concentration in the atmosphere through the Holocene. Our data are based on quantitative reconstructions of biomass burning deduced from stratified charcoal records from Europe, and South-, Central- and North America, and Oceania to test the fire-carbon release hypothesis. In Europe the significant increase of fire activity is dated ≈6000 cal. yr ago. In north-eastern North America burning activity was greatest before 7500 years ago, very low between 7500–3000 years, and has been increasing since 3000 years ago. In tropical America, the pattern is more complex and apparently latitudinally zonal. Maximum burning occurred in the southern Amazon basin and in Central America during the middle Holocene, and during the last 2000 years in the northern Amazon basin. In Oceania, biomass burning has decreased since a maximum 5000 years ago. Biomass burning has broadly increased in the Northern and Southern hemispheres throughout the second half of the Holocene associated with changes in climate and human practices. Global fire indices parallel the increase of atmospheric CO2 concentration recorded in Antarctic ice cores. Future issues on carbon dynamics relatively to biomass burning are discussed to improve the quantitative reconstructions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A monolith representing 5420 14C yr of peat accumulation was collected from a blanket bog at Myrarnar, Faroe Islands. The maximum Hg concentration (498 ng/g at a depth of 4.5 cm) coincides with the maximum concentration of anthropogenic Pb (111 μg/g). Age dating of recent peat accumulation using 210Pb (CRS model) shows that the maxima in Hg and Pb concentrations occur at AD 1954 ± 2. These results, combined with the isotopic composition of Pb in that sample (206Pb/207Pb = 1.1720 ± 0.0017), suggest that coal burning was the dominant source of both elements. From the onset of peat accumulation (ca. 4286 BC) until AD 1385, the ratios Hg/Br and Hg/Se were constant (2.2 ± 0.5 × 10-4 and 8.5 ± 1.8 × 10-3, respectively). Since then, Hg/Br and Hg/Se values have increased, also reaching their maxima in AD 1954. The age date of the maximum concentrations of anthropogenic Hg and Pb in the Faroe Islands is consistent with a previous study of peat cores from Greenland and Denmark (dated using the atmospheric bomb pulse curve of 14C), which showed maximum concentrations in AD 1953. The average rate of atmospheric Hg accumulation from 1520 BC to AD 1385 was 1.27 ± 0.38 μg/m2/yr. The Br and Se concentrations and the background Hg/Br and Hg/Se ratios were used to calculate the average rate of natural Hg accumulation for the same period, 1.32 ± 0.36 μg/m2/yr and 1.34 ± 0.29 μg/m2/yr, respectively. These fluxes are similar to the preanthropogenic rates obtained using peat cores from Switzerland, southern Greenland, southern Ontario, Canada, and the northeastern United States. Episodic volcanic emissions and the continual supply of marine aerosols to the Faroe Islands, therefore, have not contributed significantly to the Hg inventory or the Hg accumulation rates, relative to these other areas. The maximum rate of Hg accumulation was 34 μg/m2/yr. The greatest fluxes of anthropogenic Hg accumulation calculated using Br and Se, respectively, were 26 and 31 μg/m2/yr. The rate of atmospheric Hg accumulation in 1998 (16 μg/m2/yr) is comparable to the values recently obtained by atmospheric transport modeling for Denmark, the Faroe Islands, and Greenland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decision strategies aim at enabling reasonable decisions in cases of uncertain policy decision problems which do not meet the conditions for applying standard decision theory. This paper focuses on decision strategies that account for uncertainties by deciding whether a proposed list of policy options should be accepted or revised (scope strategies) and whether to decide now or later (timing strategies). They can be used in participatory approaches to structure the decision process. As a basis, we propose to classify the broad range of uncertainties affecting policy decision problems along two dimensions, source of uncertainty (incomplete information, inherent indeterminacy and unreliable information) and location of uncertainty (information about policy options, outcomes and values). Decision strategies encompass multiple and vague criteria to be deliberated in application. As an example, we discuss which decision strategies may account for the uncertainties related to nutritive technologies that aim at reducing methane (CH4) emissions from ruminants as a means of mitigating climate change, limiting our discussion to published scientific information. These considerations not only speak in favour of revising rather than accepting the discussed list of options, but also in favour of active postponement or semi-closure of decision-making rather than closure or passive postponement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper investigates alternative policies to regulate emissions from polluting product markets, specifically considering the case of the automobiles market. The two policies we consider are: a quota that limits the quantity produced of the polluting model and a more flexible average efficiency standard that requires a minimum energy efficiency across all models produced by a firm, similar to the US Corporate Average Fuel Economy (CAFE) standards. We use a duopoly model of vertical differentiation where firms produce both an economy (i.e., low polluting) version and a luxury (i.e., high polluting) version of a given product. We show that while a quota can raise firm profit over a certain range, CAFE always reduces firm profit relative to the pre-regulation. We also show that while the quota reduces emissions, it is possible that emissions increase under CAFE. The optimal policy choice will depend on the magnitude of unit damages. We show that when unit damages are sufficiently high, the quota policy is more efficient than the average efficiency standard. This suggests that instead of tightening CAFE to limit damages from emissions, policy makers can shift to a quota policy which is both welfare enhancing and more profitable for firms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decades of research show that environmental exposure to the chemical benzene is associated with severe carcinogenic, hematoxic and genotoxic effects on the human body. As such, the Environmental Protection Agency (EPA) has designated the chemical as a Hazardous Air Pollutant and prescribed benzene air concentration guidelines that provide cities with an ideal ambient level to protect human health. However, in Houston, Texas, a city home to the top industrial benzene emitters in the US who undoubtedly contribute greatly to the potentially unsafe levels of ambient benzene, regulations beyond the EPA’s unenforceable guidelines are critical to protecting public health. Despite this, the EPA has failed to establish National Ambient Air Quality Standards (NAAQS) for benzene. States are thus left to regulate air benzene levels on their own; in the case of Texas, the Texas Commission on Environmental Quality (TCEQ) and state legislature have failed to proactively develop legally enforceable policies to reduce major source benzene emissions. This inaction continues to exacerbate a public health problem, which may only be solved through a legal framework that restricts preventable benzene emissions to protect human health and holds industrial companies accountable for violations of such regulations and standards. This analysis explores legal barriers that the City of Houston and other relevant agencies currently face in their attempt to demand and bring about such change. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I have developed a novel approach to test for toxic organic substances adsorbed onto ultra fine particulate particles present in the ambient air in Northeast Houston, Texas. These particles are predominantly carbon soot with an aerodynamic diameter (AD) of <2.5 μm. If present in the ambient air, many of the organic substances will be absorbed to the surface of the particles (which act just like a charcoal air filter), and may be adducted into the respiratory system. Once imbedded into the lungs these particles may release the adsorbed toxic organic substances with serious health consequences. I used a Airmetrics portable Minivol air sampler time drawing the ambient air through collection filters samples from 6 separate sites in Northeast Houston, an area known for high ambient PM 2.5 released from chemical plants and other sources (e.g. vehicle emissions).(1) In practice, the mass of the collected particles were much less than the mass of the filters. My technique was designed to release the adsorbed organic substances on the fine carbon particles by heating the filter samples that included the PM 2.5 particles prior to identification by gas chromatography/mass spectrometry (GCMS). The results showed negligible amounts of target chemicals from the collection filters. However, the filters alone released organic substances and GCMS could not distinguish between the organic substances released from the soot particles from those released from the heated filter fabric. However, an efficacy tests of my method using two wax burning candles that released soot revealed high levels of benzene. This suggests that my method has the potential to reveal the organic substances adsorbed onto the PM 2.5 for analysis. In order to achieve this goal, I must refine the particle collection process which would be independent of the filters; the filters upon heating also release organic substances obscuring the contribution from the soot particles. To obtain pure soot particles I will have to filter more air so that the soot particles can be shaken off the filters and then analyzed by my new technique. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two respirable coal fly ash samples ((LESSTHEQ) 3(mu)m), one from a pressurized fluidized-bed combustion miniplant and one from a conventional combustion power plant, were investigated for physical properties, chemical composition and biological activity. Electron microscopy illustrated irregularity in fluidized-bed combustion fly ash and sphericity in conventional combustion fly ash. Elemental analysis of these samples showed differences in trace elements. Both fly ash samples were toxic in rabbit alveolar macrophage and Chinese hamster ovary cell systems in vitro. The macrophages were more sensitive to toxicity of fly ash than the ovary cells. For measuring the cytotoxicity of fly ash, the most sensitive parameters were adenosine triphosphate in the alveolar macrophage system and viability index in the hamster ovary system. Intact fluidized-bed combustion fly-ash particles showed mutagenicity only in strains TA98 and TA1538 without metabolic activation in the Ames Salmonella assay. No mutagenicity was detected in bioassay of conventional combustion fly ash particles. Solvent extraction yielded more mass from fluidized-bed combustion fly ash than from conventional combustion fly ash. The extracts of fluidized-bed combustion fly ash showed higher mutagenic activity than conventional combustion fly ash. These samples contained direct-acting, frameshift mutagens.^ Fly ash samples collected from the same fluidized-bed source by cyclones, a fabric filter, and a electrostatic precipitator at various temperatures were compared for particle size, toxicity, and mutagenicity. Results demonstrated that the biological activity of coal fly ash were affected by the collection site, device, and temperature.^ Coal fly ash vapor-coated with 1-nitropyrene was developed as a model system to study the bioavailability and recovery of nitroaromatic compounds in fly ash. The effects of vapor deposition on toxicity and mutagenicity of fly ash were examined. The nitropyrene coating did not significantly alter the ash's cytotoxicity. Nitropyrene was bioavailable in the biological media, and a significant percentage was not recovered after the coated fly ash was cultured with alveolar macrophages. 1-Nitropyrene loss increased as the number of macrophages was increased, suggesting that the macrophages are capable of metabolizing or binding 1-nitropyrene present in coal fly ash. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the past five years we have developed three emission calorimeters (EC) that can be used to evaluate mass generation and utilization of gasses. We have tested various treatments that significantly reduced ammonia generation by laying hen manure (Harrison and Koelkebeck, 2002; 2003).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although grassland and savanna occupy only a quarter of the world's vegetation, burning in these ecosystems accounts for roughly half the global carbon emissions from fire. However, the processes that govern changes in grassland burning are poorly understood, particularly on time scales beyond satellite records. We analyzed microcharcoal, sediments, and geochemistry in a high-resolution marine sediment core off Namibia to identify the processes that have controlled biomass burning in southern African grassland ecosystems under large, multimillennial-scale climate changes. Six fire cycles occurred during the past 170,000 y in southern Africa that correspond both in timing and magnitude to the precessional forcing of north-south shifts in the Intertropical Convergence Zone. Contrary to the conventional expectation that fire increases with higher temperatures and increased drought, we found that wetter and cooler climates cause increased burning in the study region, owing to a shift in rainfall amount and seasonality (and thus vegetation flammability). We also show that charcoal morphology (i.e., the particle's length-to-width ratio) can be used to reconstruct changes in fire activity as well as biome shifts over time. Our results provide essential context for understanding current and future grassland-fire dynamics and their associated carbon emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pockmarks are seafloor depressions commonly associated with fluid escape from the seabed and are believed to contribute noticeably to the transfer of methane into the ocean and ultimately into the atmosphere. They occur in many different areas and geological contexts, and vary greatly in size and shape. Nevertheless, the mechanisms of pockmark growth are still largely unclear. Still, seabed methane emissions contribute to the global carbon budget, and understanding such processes is critical to constrain future quantifications of seabed methane release at local and global scales. The giant Regab pockmark (9°42.6' E, 5°47.8' S), located at 3160 m water depth near the Congo deep-sea channel (offshore southwestern Africa), was investigated with state-of-the-art mapping devices mounted on IFREMER's (French Research Institute for Exploitation of the Sea) remotely operated vehicle (ROV) Victor 6000. ROV-borne micro-bathymetry and backscatter data of the entire structure, a high-resolution photo-mosaic covering 105,000 m2 of the most active area, sidescan mapping of gas emissions, and maps of faunal distribution as well as of carbonate crust occurrence are combined to provide an unprecedented detailed view of a giant pockmark. All data sets suggest that the pockmark is composed of two very distinctive zones in terms of seepage intensity. We postulate that these zones are the surface expression of two fluid flow regimes in the subsurface: focused flow through a fractured medium and diffuse flow through a porous medium. We conclude that the growth of giant pockmarks is controlled by self-sealing processes and lateral spreading of rising fluids. In particular, partial redirection of fluids through fractures in the sediments can drive the pockmark growth in preferential directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

abstract to be added by authors