949 resultados para Buck-Boost inverter
Resumo:
The objective of this master’s thesis is to investigate the loss behavior of three-level ANPC inverter and compare it with conventional NPC inverter. The both inverters are controlled with mature space vector modulation strategy. In order to provide the comparison both accurate and detailed enough NPC and ANPC simulation models should be obtained. The similar control model of SVM is utilized for both NPC and ANPC inverter models. The principles of control algorithms, the structure and description of models are clarified. The power loss calculation model is based on practical calculation approaches with certain assumptions. The comparison between NPC and ANPC topologies is presented based on results obtained for each semiconductor device, their switching and conduction losses and efficiency of the inverters. Alternative switching states of ANPC topology allow distributing losses among the switches more evenly, than in NPC inverter. Obviously, the losses of a switching device depend on its position in the topology. Losses distribution among the components in ANPC topology allows reducing the stress on certain switches, thus losses are equally distributed among the semiconductors, however the efficiency of the inverters is the same. As a new contribution to earlier studies, the obtained models of SVM control, NPC and ANPC inverters have been built. Thus, this thesis can be used in further more complicated modelling of full-power converters for modern multi-megawatt wind energy conversion systems.
Resumo:
Competitividad y valor compartido
Resumo:
Structures related to ductile siMple shear parallel to the Bankf ield-Tonbill Fault, define a 5km wide zone, the Barton Bay Deformation Zone. Structures present within this zone Include; simple shear fabrics S, C and C , asymmetric Z shaped folds with rotated axes, boudinage and pinch and swell structures and a subhorlzontal extension llneation. The most highly deformed rock is a gabbro mylonite which occurs in the fault zone. The deformation of this gabbro has been traced in stages from a protomylonite to an ultramylonite In which feldspar and chlorite grainslze has been reduced from over 100 microns to as little as 5 microns. Evidence from the mylonite and the surrounding structure indicates that deformation within the Barton Bay Deformation Zone is related to a regional simple shear zone, the Bankf ield-Tombill Fault. Movement along this shear zone was in a south over north oblique strike slip fashion with a dextral sense of displacement.
Resumo:
Sculpture by R. Bret Price in front of the Harold Hutton Sports Center, 219 E. Sycamore St., Chapman College, Orange, California. The Harold Hutton Sports Center completed in 1978, is named in honor of this former trustee, and made possible by a gift from his wife, Betty Hutton Williams. Image used for holiday card by Chapman College president G. T. "Buck" Smith and his wife Joni.
Resumo:
Smith Hall, 215 E. Palm St., Chapman College, Orange, California. This building was completed in 1913 as the Science Building for Orange Union High School and was acquired by Chapman in 1954. In 1988 it was named in honor of former president G.T. (Buck) Smith and his wife, Joni. Buck Smith served as president of the university from 1977 to 1988. This building (2 floors, basement, 15,263 sq.ft.) houses the Psychology Department and is listed in the National Registry for Historical Buildings.
Resumo:
Entrance to Smith Hall, Chapman College, Orange, California. This building was completed in 1913 as the Science Building for Orange Union High School and was acquired by Chapman in 1954. In 1988 it was named in honor of former president G.T. (Buck) Smith and his wife, Joni. Buck Smith served as president of the university from 1977 to 1988. This building (2 floors, basement, 15,263 sq.ft.) houses the Psychology Department and is listed in the National Registry for Historical Buildings.
Resumo:
Looking south to Smith Hall, Chapman College, Orange, California. This building was completed in 1913 as the Science Building for Orange Union High School and was acquired by Chapman in 1954. In 1988 it was named in honor of former president G.T. (Buck) Smith and his wife, Joni. Buck Smith served as president of the university from 1977 to 1988. This building (2 floors, basement, 15,263 sq.ft.) houses the Psychology Department and is listed in the National Registry for Historical Buildings.
Resumo:
Looking south to front of Smith Hall, Chapman College, Orange, California. This building was completed in 1913 as the Science Building for Orange Union High School and was acquired by Chapman in 1954. In 1988 it was named in honor of former president G.T. (Buck) Smith and his wife, Joni. Buck Smith served as president of the university from 1977 to 1988. This building (2 floors, basement, 15,263 sq.ft.) houses the Psychology Department and is listed in the National Registry for Historical Buildings.
Resumo:
Smith Hall, Chapman College, Orange, California, looking southwest. This building was completed in 1913 as the Science Building for Orange Union High School and was acquired by Chapman in 1954. In 1988 it was named in honor of former president G.T. (Buck) Smith and his wife, Joni. Buck Smith served as president of the university from 1977 to 1988. This building (2 floors, basement, 15,263 sq.ft.) houses the Psychology Department and is listed in the National Registry for Historical Buildings.
Resumo:
View across lawn of Smith Hall, Chapman College, Orange, California. This building was completed in 1913 as the Science Building for Orange Union High School and was acquired by Chapman in 1954. In 1988 it was named in honor of former president G.T. (Buck) Smith and his wife, Joni. Buck Smith served as president of the university from 1977 to 1988. This building (2 floors, basement, 15,263 sq.ft.) houses the Psychology Department and is listed in the National Registry for Historical Buildings.
Resumo:
From American Society of Civil Engineers.
Resumo:
The purpose of this study was to understand the experiences of Canada’s high performance athletes who have benefitted from Own the Podium (OTP)-recommended funding and support leading up to an Olympic or Paralympic Games. OTP, a nonprofit agency, is responsible for determining the overall investment strategy for high performance sport in Canada through recommendations to support national sport organizations (NSOs) with the aim to improve Canadian performances at the Olympic and Paralympic Games. For this study, data were collected through in-depth interviews with eleven Canadian high performance athletes (i.e., single-sport Summer/Winter Olympians and Paralympians and recently retired athletes). Analysis of the data resulted in twelve overarching themes; resources, pressure, missing gap, results, targeting, stress, expectations, boost in confidence, OTP relationship, OTP name, pre/post OTP, and lost funding. Overall, results from this exploratory research indicate that athletes generally had a favourable perception regarding OTP-recommended funding and support.
Resumo:
Affiliation: Maude Loignon, Lise Cyr & Emil Toma : Département de microbiologie et immunologie, Faculté de médecine, Université de Montréal
Resumo:
Par cette recherche, nous voulons évaluer de manière exhaustive les bénéfices qu’apporte l’ExAO (Expérimentation Assistée par Ordinateur) dans les laboratoires scolaires de sciences et technologie au Liban. Nous aimerions aussi qu’elle contribue d’une manière tangible aux recherches du laboratoire de Robotique Pédagogique de l’Université de Montréal, notamment dans le développement du µlaboratoire ExAO. Nous avons voulu tester les capacités de l’ExAO, son utilisation en situation de classe comme : 1. Substitut d’un laboratoire traditionnel dans l’utilisation de la méthode expérimentale; 2. Outil d’investigation scientifique; 3. Outil d’intégration des sciences expérimentales et des mathématiques; 4. Outil d’intégration des sciences expérimentales, des mathématiques et de la technologie dans un apprentissage technoscientifique; Pour ce faire, nous avons mobilisé 13 groupe-classes de niveaux complémentaire et secondaire, provenant de 10 écoles libanaises. Nous avons désigné leurs enseignants pour expérimenter eux-mêmes avec leurs étudiants afin d’évaluer, de manière plus réaliste les avantages d’implanter ce micro laboratoire informatisé à l’école. Les différentes mise à l’essai, évaluées à l’aide des résultats des activités d’apprentissage réalisées par les étudiants, de leurs réponses à un questionnaire et des commentaires des enseignants, nous montrent que : 1. La substitution d’un laboratoire traditionnel par un µlaboratoire ExAO ne semble pas poser de problème; dix minutes ont suffi aux étudiants pour se familiariser avec cet environnement, mentionnant que la rapidité avec laquelle les données étaient représentées sous forme graphique était plus productive. 2. Pour l’investigation d’un phénomène physique, la convivialité du didacticiel associée à la capacité d’amplifier le phénomène avant de le représenter graphiquement a permis aux étudiants de concevoir et de mettre en œuvre rapidement et de manière autonome, une expérimentation permettant de vérifier leur prédiction. 3. L’intégration des mathématiques dans une démarche expérimentale permet d’appréhender plus rapidement le phénomène. De plus, elle donne un sens aux représentations graphiques et algébriques, à l’avis des enseignants, permettant d’utiliser celle-ci comme outil cognitif pour interpréter le phénomène. 4. La démarche réalisée par les étudiants pour concevoir et construire un objet technologique, nous a montré que cette activité a été réalisée facilement par l’utilisation des capteurs universels et des amplificateurs à décalage de l’outil de modélisation graphique ainsi que la capacité du didacticiel à transformer toute variable mesurée par une autre variable (par exemple la variation de résistance en variation de température, …). Cette activité didactique nous montre que les étudiants n’ont eu aucune difficulté à intégrer dans une même activité d’apprentissage les mathématiques, les sciences expérimentales et la technologie, afin de concevoir et réaliser un objet technologique fonctionnel. µlaboratoire ExAO, en offrant de nouvelles possibilités didactiques, comme la capacité de concevoir, réaliser et valider un objet technologique, de disposer pour ce faire, des capacités nouvelles pour amplifier les mesures, modéliser les phénomènes physiques, créer de nouveaux capteurs, est un ajout important aux expériences actuellement réalisées en ExAO.