961 resultados para Boolean Functions, Equivalence Class
Resumo:
In this study we investigate the existence, uniqueness and asymptotic stability of solutions of a class of nonlinear integral equations which are representations for some time dependent non- linear partial differential equations. Sufficient conditions are established which allow one to infer the stability of the nonlinear equations from the stability of the linearized equations. Improved estimates of the domain of stability are obtained using a Liapunov Functional approach. These results are applied to some nonlinear partial differential equations governing the behavior of nonlinear continuous dynamical systems.
Resumo:
Data were taken in 1979-80 by the CCFRR high energy neutrino experiment at Fermilab. A total of 150,000 neutrino and 23,000 antineutrino charged current events in the approximate energy range 25 < E_v < 250GeV are measured and analyzed. The structure functions F2 and xF_3 are extracted for three assumptions about σ_L/σ_T:R=0., R=0.1 and R= a QCD based expression. Systematic errors are estimated and their significance is discussed. Comparisons or the X and Q^2 behaviour or the structure functions with results from other experiments are made.
We find that statistical errors currently dominate our knowledge of the valence quark distribution, which is studied in this thesis. xF_3 from different experiments has, within errors and apart from level differences, the same dependence on x and Q^2, except for the HPWF results. The CDHS F_2 shows a clear fall-off at low-x from the CCFRR and EMC results, again apart from level differences which are calculable from cross-sections.
The result for the the GLS rule is found to be 2.83±.15±.09±.10 where the first error is statistical, the second is an overall level error and the third covers the rest of the systematic errors. QCD studies of xF_3 to leading and second order have been done. The QCD evolution of xF_3, which is independent of R and the strange sea, does not depend on the gluon distribution and fits yield
ʌ_(LO) = 88^(+163)_(-78) ^(+113)_(-70) MeV
The systematic errors are smaller than the statistical errors. Second order fits give somewhat different values of ʌ, although α_s (at Q^2_0 = 12.6 GeV^2) is not so different.
A fit using the better determined F_2 in place of xF_3 for x > 0.4 i.e., assuming q = 0 in that region, gives
ʌ_(LO) = 266^(+114)_(-104) ^(+85)_(-79) MeV
Again, the statistical errors are larger than the systematic errors. An attempt to measure R was made and the measurements are described. Utilizing the inequality q(x)≥0 we find that in the region x > .4 R is less than 0.55 at the 90% confidence level.
Resumo:
The dissertation is concerned with the mathematical study of various network problems. First, three real-world networks are considered: (i) the human brain network (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a “control and optimization” point of view. After studying these three real-world networks, two abstract network problems are also explored, which are motivated by power systems. The first one is “flow optimization over a flow network” and the second one is “nonlinear optimization over a generalized weighted graph”. The results derived in this dissertation are summarized below.
Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a network of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. First, we consider an electric circuit model and show that the inverse covariance matrix of the node voltages reveals the topology of the circuit. Second, we study the problem of finding the topology of the circuit based on only measurement. In this case, by assuming that the circuit is hidden inside a black box and only the nodal signals are available for measurement, the aim is to find the topology of the circuit when a limited number of samples are available. For this purpose, we deploy the graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso may find most of the circuit topology if the exact covariance matrix is well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to the graphical lasso algorithm and demonstrate its performance. Finally, the technique developed in this work will be applied to the resting-state fMRI data of a number of healthy subjects.
Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the network resources are shared efficiently. Despite the progress in the analysis and synthesis of the Internet congestion control, almost all existing fluid models of congestion control assume that every link in the path of a flow observes the original source rate. To address this issue, a more accurate model is derived in this work for the behavior of the network under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used.
Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power network minimizing the total power generation cost subject to network and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time. To this end, a convex relaxation is proposed, which solves the OPF problem exactly for every radial network and every meshed network with a sufficient number of phase shifters, provided power over-delivery is allowed. The concept of “power over-delivery” is equivalent to relaxing the power balance equations to inequality constraints.
Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow network is considered. In this problem, each node is associated with some possibly unknown injection, each line has two unknown flows at its ends related to each other via a nonlinear function, and all injections and flows need to satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption.
Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. Various sufficient conditions are derived, which relate the polynomial-time solvability of different classes of optimization problems to weak properties of the generalized weighted graph such as its topology and the sign definiteness of its weight sets. As an application, it is proved that a broad class of real and complex optimizations over power networks are polynomial-time solvable due to the passivity of transmission lines and transformers.
Resumo:
With data centers being the supporting infrastructure for a wide range of IT services, their efficiency has become a big concern to operators, as well as to society, for both economic and environmental reasons. The goal of this thesis is to design energy-efficient algorithms that reduce energy cost while minimizing compromise to service. We focus on the algorithmic challenges at different levels of energy optimization across the data center stack. The algorithmic challenge at the device level is to improve the energy efficiency of a single computational device via techniques such as job scheduling and speed scaling. We analyze the common speed scaling algorithms in both the worst-case model and stochastic model to answer some fundamental issues in the design of speed scaling algorithms. The algorithmic challenge at the local data center level is to dynamically allocate resources (e.g., servers) and to dispatch the workload in a data center. We develop an online algorithm to make a data center more power-proportional by dynamically adapting the number of active servers. The algorithmic challenge at the global data center level is to dispatch the workload across multiple data centers, considering the geographical diversity of electricity price, availability of renewable energy, and network propagation delay. We propose algorithms to jointly optimize routing and provisioning in an online manner. Motivated by the above online decision problems, we move on to study a general class of online problem named "smoothed online convex optimization", which seeks to minimize the sum of a sequence of convex functions when "smooth" solutions are preferred. This model allows us to bridge different research communities and help us get a more fundamental understanding of general online decision problems.
Resumo:
In noncooperative cost sharing games, individually strategic agents choose resources based on how the welfare (cost or revenue) generated at each resource (which depends on the set of agents that choose the resource) is distributed. The focus is on finding distribution rules that lead to stable allocations, which is formalized by the concept of Nash equilibrium, e.g., Shapley value (budget-balanced) and marginal contribution (not budget-balanced) rules.
Recent work that seeks to characterize the space of all such rules shows that the only budget-balanced distribution rules that guarantee equilibrium existence in all welfare sharing games are generalized weighted Shapley values (GWSVs), by exhibiting a specific 'worst-case' welfare function which requires that GWSV rules be used. Our work provides an exact characterization of the space of distribution rules (not necessarily budget-balanced) for any specific local welfare functions remains, for a general class of scalable and separable games with well-known applications, e.g., facility location, routing, network formation, and coverage games.
We show that all games conditioned on any fixed local welfare functions possess an equilibrium if and only if the distribution rules are equivalent to GWSV rules on some 'ground' welfare functions. Therefore, it is neither the existence of some worst-case welfare function, nor the restriction of budget-balance, which limits the design to GWSVs. Also, in order to guarantee equilibrium existence, it is necessary to work within the class of potential games, since GWSVs result in (weighted) potential games.
We also provide an alternative characterization—all games conditioned on any fixed local welfare functions possess an equilibrium if and only if the distribution rules are equivalent to generalized weighted marginal contribution (GWMC) rules on some 'ground' welfare functions. This result is due to a deeper fundamental connection between Shapley values and marginal contributions that our proofs expose—they are equivalent given a transformation connecting their ground welfare functions. (This connection leads to novel closed-form expressions for the GWSV potential function.) Since GWMCs are more tractable than GWSVs, a designer can tradeoff budget-balance with computational tractability in deciding which rule to implement.
Resumo:
We develop new algorithms which combine the rigorous theory of mathematical elasticity with the geometric underpinnings and computational attractiveness of modern tools in geometry processing. We develop a simple elastic energy based on the Biot strain measure, which improves on state-of-the-art methods in geometry processing. We use this energy within a constrained optimization problem to, for the first time, provide surface parameterization tools which guarantee injectivity and bounded distortion, are user-directable, and which scale to large meshes. With the help of some new generalizations in the computation of matrix functions and their derivative, we extend our methods to a large class of hyperelastic stored energy functions quadratic in piecewise analytic strain measures, including the Hencky (logarithmic) strain, opening up a wide range of possibilities for robust and efficient nonlinear elastic simulation and geometry processing by elastic analogy.
Resumo:
The applicability of the white-noise method to the identification of a nonlinear system is investigated. Subsequently, the method is applied to certain vertebrate retinal neuronal systems and nonlinear, dynamic transfer functions are derived which describe quantitatively the information transformations starting with the light-pattern stimulus and culminating in the ganglion response which constitutes the visually-derived input to the brain. The retina of the catfish, Ictalurus punctatus, is used for the experiments.
The Wiener formulation of the white-noise theory is shown to be impractical and difficult to apply to a physical system. A different formulation based on crosscorrelation techniques is shown to be applicable to a wide range of physical systems provided certain considerations are taken into account. These considerations include the time-invariancy of the system, an optimum choice of the white-noise input bandwidth, nonlinearities that allow a representation in terms of a small number of characterizing kernels, the memory of the system and the temporal length of the characterizing experiment. Error analysis of the kernel estimates is made taking into account various sources of error such as noise at the input and output, bandwidth of white-noise input and the truncation of the gaussian by the apparatus.
Nonlinear transfer functions are obtained, as sets of kernels, for several neuronal systems: Light → Receptors, Light → Horizontal, Horizontal → Ganglion, Light → Ganglion and Light → ERG. The derived models can predict, with reasonable accuracy, the system response to any input. Comparison of model and physical system performance showed close agreement for a great number of tests, the most stringent of which is comparison of their responses to a white-noise input. Other tests include step and sine responses and power spectra.
Many functional traits are revealed by these models. Some are: (a) the receptor and horizontal cell systems are nearly linear (small signal) with certain "small" nonlinearities, and become faster (latency-wise and frequency-response-wise) at higher intensity levels, (b) all ganglion systems are nonlinear (half-wave rectification), (c) the receptive field center to ganglion system is slower (latency-wise and frequency-response-wise) than the periphery to ganglion system, (d) the lateral (eccentric) ganglion systems are just as fast (latency and frequency response) as the concentric ones, (e) (bipolar response) = (input from receptors) - (input from horizontal cell), (f) receptive field center and periphery exert an antagonistic influence on the ganglion response, (g) implications about the origin of ERG, and many others.
An analytical solution is obtained for the spatial distribution of potential in the S-space, which fits very well experimental data. Different synaptic mechanisms of excitation for the external and internal horizontal cells are implied.
Resumo:
35 p.
Resumo:
O presente trabalho tem como objetivo reconhecer as experiências de inserção do assistente social na Saúde da Família e as tendências da prática profissional nessa área. Diante das repercussões da contrarreforma na política e nas práticas de saúde, questionamos como o Serviço Social tem pautado suas experiências de inserção frente às contradições da Saúde da Família. Para isso, a pesquisa é baseada no referencial crítico dialético, em que utilizamos a metodologia da pesquisa documental com levantamento quanti-qualitativo. A análise foi realizada a partir das comunicações com referência à Saúde da Família do Congresso Brasileiro de Assistentes Sociais (CBAS) e Congresso Nacional de Serviço Social em Saúde (CONASSS) entre os anos de 2000 a 2009. Nos trabalhos foram identificados três eixos temáticos: Análise da Estratégia, Relato de experiência e Reflexão das possibilidades de inserção. A partir desses eixos buscamos reconhecer a dimensão teórico-metodológica, ético-política e técnico-operativa. Os resultados apontam que os assistentes sociais têm ocupado predominantemente funções de suporte em equipes de referência e que esta tem se apresentado como a possibilidade de inserção oficial através do NASF. Nas abordagens reconhecemos que as experiências pautadas na perspectiva crítica contam com histórico de articulação com os movimentos sociais, com referência à Reforma Sanitária e as discussões da categoria, e na prática, esses conceitos direcionam o processo de trabalho. Verificamos que há uma tendência majoritária de incorporação do discurso do Ministério da Saúde quanto à estrutura e processo de trabalho em Saúde da Família, o que tem contribuído para a incorporação de instrumentais construídos pela Estratégia na prática profissional. Essa tendência aponta que a inserção dos assistentes sociais na Saúde da Família tem recebido influências de vertentes neoconservadoras e sofrido os impactos da contrarreforma na política de saúde.
Resumo:
Red fluorescent proteins (RFPs) have attracted significant engineering focus because of the promise of near infrared fluorescent proteins, whose light penetrates biological tissue, and which would allow imaging inside of vertebrate animals. The RFP landscape, which numbers ~200 members, is mostly populated by engineered variants of four native RFPs, leaving the vast majority of native RFP biodiversity untouched. This is largely due to the fact that native RFPs are obligate tetramers, limiting their usefulness as fusion proteins. Monomerization has imposed critical costs on these evolved tetramers, however, as it has invariably led to loss of brightness, and often to many other adverse effects on the fluorescent properties of the derived monomeric variants. Here we have attempted to understand why monomerization has taken such a large toll on Anthozoa class RFPs, and to outline a clear strategy for their monomerization. We begin with a structural study of the far-red fluorescence of AQ143, one of the furthest red emitting RFPs. We then try to separate the problem of stable and bright fluorescence from the design of a soluble monomeric β-barrel surface by engineering a hybrid protein (DsRmCh) with an oligomeric parent that had been previously monomerized, DsRed, and a pre-stabilized monomeric core from mCherry. This allows us to use computational design to successfully design a stable, soluble, fluorescent monomer. Next we took HcRed, which is a previously unmonomerized RFP that has far-red fluorescence (λemission = 633 nm) and attempted to monomerize it making use of lessons learned from DsRmCh. We engineered two monomeric proteins by pre-stabilizing HcRed’s core, then monomerizing in stages, making use of computational design and directed evolution techniques such as error-prone mutagenesis and DNA shuffling. We call these proteins mGinger0.1 (λem = 637 nm / Φ = 0.02) and mGinger0.2 (λem = 631 nm Φ = 0.04). They are the furthest red first generation monomeric RFPs ever developed, are significantly thermostabilized, and add diversity to a small field of far-red monomeric FPs. We anticipate that the techniques we describe will be facilitate future RFP monomerization, and that further core optimization of the mGingers may allow significant improvements in brightness.
Resumo:
This thesis is divided into three chapters. In the first chapter we study the smooth sets with respect to a Borel equivalence realtion E on a Polish space X. The collection of smooth sets forms σ-ideal. We think of smooth sets as analogs of countable sets and we show that an analog of the perfect set theorem for Σ11 sets holds in the context of smooth sets. We also show that the collection of Σ11 smooth sets is ∏11 on the codes. The analogs of thin sets are called sparse sets. We prove that there is a largest ∏11 sparse set and we give a characterization of it. We show that in L there is a ∏11 sparse set which is not smooth. These results are analogs of the results known for the ideal of countable sets, but it remains open to determine if large cardinal axioms imply that ∏11 sparse sets are smooth. Some more specific results are proved for the case of a countable Borel equivalence relation. We also study I(E), the σ-ideal of closed E-smooth sets. Among other things we prove that E is smooth iff I(E) is Borel.
In chapter 2 we study σ-ideals of compact sets. We are interested in the relationship between some descriptive set theoretic properties like thinness, strong calibration and the covering property. We also study products of σ-ideals from the same point of view. In chapter 3 we show that if a σ-ideal I has the covering property (which is an abstract version of the perfect set theorem for Σ11 sets), then there is a largest ∏11 set in Iint (i.e., every closed subset of it is in I). For σ-ideals on 2ω we present a characterization of this set in a similar way as for C1, the largest thin ∏11 set. As a corollary we get that if there are only countable many reals in L, then the covering property holds for Σ12 sets.