987 resultados para Boecio, ca. 475-524
Resumo:
Proxy reconstructions of tropical Atlantic sea surface temperature (SST) that extend beyond the period of instrumental observations have primarily focused on centennial to millennial variability rather than on seasonal to multidecadal variability. Here we present monthly-resolved records of Sr/Ca (a proxy of SST) from fossil annually-banded Diploria strigosa corals from Bonaire (southern Caribbean Sea). The individual corals provide time-windows of up to 68 years length, and the total number of 295 years of record allows for assessing the natural range of seasonal to multidecadal SST variability in the western tropical Atlantic during snapshots of the mid- to late Holocene. Comparable to modern climate, the coral Sr/Ca records reveal that mid- to late Holocene SST was characterised by clear seasonal cycles, persistent quasi-biennial and prominent interannual as well as inter- to multidecadal-scale variability. However, the magnitude of SST variations on these timescales has varied over the last 6.2 ka. The coral records show increased seasonality during the mid-Holocene consistent with climate model simulations indicating that southern Caribbean SST seasonality is induced by insolation changes on orbital timescales, whereas internal dynamics of the climate system play an important role on shorter timescales. Interannual SST variability is linked to ocean-atmosphere interactions of Atlantic and Pacific origin. Pronounced interannual variability in the western tropical Atlantic is indicated by a 2.35 ka coral, possibly related to a strengthening of the variability of the El Niño/Southern Oscillation throughout the Holocene. Prominent inter- to multidecadal SST variability is evident in the coral records and slightly more pronounced in the mid-Holocene. We finally argue that our coral data provide a target for studying Holocene climate variability on seasonal and interannual to multidecadal timescales, when using further numerical models and high-resolution proxy data.
Resumo:
Modern variability in upwelling off southern Indonesia is strongly controlled by the Australian-Indonesian monsoon and the El Niño-Southern Oscillation, but multi-decadal to centennial-scale variations are less clear. We present high-resolution records of upper water column temperature, thermal gradient and relative abundances of mixed layer- and thermocline-dwelling planktonic foraminiferal species off southern Indonesia for the past two millennia that we use as proxies for upwelling variability. We find that upwelling was generally strong during the Little Ice Age (LIA) and weak during the Medieval Warm Period (MWP) and the Roman Warm Period (RWP). Upwelling is significantly anti-correlated to East Asian summer monsoonal rainfall and the zonal equatorial Pacific temperature gradient. We suggest that changes in the background state of the tropical Pacific may have substantially contributed to the centennial-scale upwelling trends observed in our records. Our results implicate the prevalence of an El Niño-like mean state during the LIA and a La Niña-like mean state during the MWP and the RWP.
Resumo:
Laser ablation inductively coupled plasma-mass spectrometry microanalysis of fossil and live Globigerinoides ruber from the eastern Indian Ocean reveals large variations of Mg/Ca composition both within and between individual tests from core top or plankton pump samples. Although the extent of intertest and intratest compositional variability exceeds that attributable to calcification temperature, the pooled mean Mg/Ca molar values obtained for core top samples between the equator and >30°S form a strong exponential correlation with mean annual sea surface temperature (Mg/Ca mmol/mol = 0.52 exp**0.076SST°C, r**2 = 0.99). The intertest Mg/Ca variability within these deep-sea core top samples is a source of significant uncertainty in Mg/Ca seawater temperature estimates and is notable for being site specific. Our results indicate that widely assumed uncertainties in Mg/Ca thermometry may be underestimated. We show that statistical power analysis can be used to evaluate the number of tests needed to achieve a target level of uncertainty on a sample by sample case. A varying bias also arises from the presence and varying mix of two morphotypes (G. ruber ruber and G. ruber pyramidalis), which have different mean Mg/Ca values. Estimated calcification temperature differences between these morphotypes range up to 5°C and are notable for correlating with the seasonal range in seawater temperature at different sites.
Resumo:
A tephrochronology of the past 5 Ma is constructed with ash layers recovered from Neogene sediments during drilling at ODP Leg 121 Site 758 on northern Ninetyeast Ridge. The several hundred tephra layers observed in the first 80 m of cores range in thickness from a few millimeters to 34 cm. Seventeen tephra layers, at least 1 cm thick, were sampled and analyzed for major elements. Relative ages for the ash layers are estimated from the paleomagnetic and d18O chronostratigraphy. The ash layers comprise about 1.7% by volume of the sediments recovered in the first 72 m. The median grain size of the ashes is about 75 ?m, with a maximum of 150 ?m. The ash consists of rhyolitic bubble junction and pumice glass shards. Blocky and platy shards are in even proportion (10%-30%) and are dominated by bubble wall shards (70%-90%). The crystal content of the layers is always less than 2%, with Plagioclase and alkali feldspar present in nearly every layer. Biotite was observed only in the thickest layers. The major element compositions of glass and feldspar reflect fractionation trends. Three groupings of ash layers suggest different provenances with distinct magmatic systems. Dating by d18O and paleomagnetic reversals suggests major marine ash-layer-producing eruptions (marine tephra layers > 1 cm in thickness) occur roughly every approximately 414,000 yr. This value correlates well with landbased studies and dates of Pleistocene Sumatran tuffs (average 375,000-yr eruptive interval). Residence times of the magmatic systems defined by geochemical trends are 1.583, 2.524, and 1.399 Ma. The longest time interval starts with the least differentiated magma. The Sunda Arc, specifically Sumatra, is inferred to be the source region for the ashes. Four of the youngest five ash layers recovered correlate in time and in major element chemistry to ashes observed on land at the Toba caldera.
Resumo:
Paired Mg/Ca and d18O measurements on planktonic foraminiferal species (G. ruber white, G. ruber pink, G. sacculifer, G. conglobatus, G. aequilateralis, O. universa, N. dutertrei, P. obliquiloculata, G. inflata, G. truncatulinoides, G. hirsuta, and G. crassaformis) from a 6-year sediment trap time series in the Sargasso Sea were used to define the sensitivity of foraminiferal Mg/Ca to calcification temperature. Habitat depths and calcification temperatures were estimated from comparison of d18O of foraminifera with equilibrium calcite, based on historical temperature and salinity data. When considered together, Mg/Ca (mmol/mol) of all species, except two, show a significant (r = 0.93) relationship with temperature (T °C) of the form Mg/Ca = 0.38 (±0.02) exp 0.090 (±0.003)T, equivalent to a 9.0 ± 0.3% change in Mg/Ca for a 1°C change in temperature. Small differences exist in calibrations between species and between different size fractions of the same species. O. universa and G. aequilateralis have higher Mg/Ca than other species, and in general, data can be best described with the same temperature sensitivity for all species and pre-exponential constants in the sequence O. universa > G. aequilateralis = G. bulloides > G. ruber = G. sacculifer = other species. This approach gives an accuracy of ±1.2°C in the estimation of calcification temperature. The 9% sensitivity to temperature is similar to published studies from culture and core top calibrations, but differences exist from some literature values of pre-exponential constants. Different cleaning methodologies and artefacts of core top dissolution are probably implicated, and perhaps environmental factors yet understood. Planktonic foraminiferal Mg/Ca temperature estimates can be used for reconstructing surface temperatures and mixed and thermocline temperatures (using G. ruber pink, G. ruber white, G. sacculifer, N. dutertrei, P. obliquiloculata, etc.). The existence of a single Mg thermometry equation is valuable for extinct species, although use of species-specific equations will, where statistically significant, provide more accurate evaluation of Mg/Ca paleotemperature.
Resumo:
Boron isotope systematics indicate that boron incorporation into foraminiferal CaCO3 is determined by the partition coefficient, KD = [B/Ca](CaCO3)/[B(OH)4**-/HCO3**-](seawater), and [B(OH)4?/HCO3?](seawater), providing, in principle, a method to estimate seawater pH and PCO2. We have measured B/Ca ratios in Globigerina bulloides and Globorotaliainflata for a series of core tops from the North Atlantic and the Southern Ocean and in Globigerinoides ruber (white) from Ocean Drilling Program (ODP) site 668B on the Sierra Leone Rise in the eastern equatorial Atlantic. B/Ca ratios in these species of planktonic foraminifera seem unaffected by dissolution on the seafloor. KD shows a strong species-specific dependence on calcification temperature, which can be corrected for using the Mg/Ca temperature proxy. A preliminary study of G. inflata from Southern Ocean sediment core CHAT 16K suggests that temperature-corrected B/Ca was ~30% higher during the last glacial. Correspondingly, pH was 0.15 units higher and aqueous PCO2 was 95 ?atm lower at this site at the Last Glacial Maximum. The covariation between reconstructed PCO2 and the atmospheric pCO2 from the Vostok ice core demonstrates the feasibility of using B/Ca in planktonic foraminifera for reconstructing past variations in pH and PCO2.
Resumo:
During three to four d18O cycles (determined on Globigerinoides ruber), more positive d18O (= higher global ice volume) values correlated with higher Globorotalia menardii percentages, total numbers of benthic foraminifers, number of benthic foraminifer species, and the percent of total foraminifers composed of benthic foraminifers. During the same intervals, barite and insoluble residues also generally recorded higher values; however, there was no clear evidence of systematic variation in cadmium/calcium ratios (in benthic foraminifers). Maximum percentages of Globigerinoides sacculifer and Globigerinoides ruber correlate with more negative d18O (= lower global ice volume) values, although they sometimes appear to lead the d18O changes by < =4,000 yr. The increase in percentage of the tropical "divergence" planktonic foraminifer species G. menardii and the reduction of the "nondivergence" tropical species G. ruber and G. sacculifer at times of inferred ice growth is attributed to periodic intensification of divergence associated with the Equatorial Counter Current. Barite and insoluble residue sedi- mentation at the site also generally show a relative increase at those times.