944 resultados para Blood alcohol levels.
Resumo:
Serum uric acid (SUA) concentration is independently associated with blood pressure (BP) in adults. We examined this association in young adults at an age where anti-hypertension treatment, other potential confounding factors and co-morbidity are unlikely to occur. We assessed BP, anthropometric variables including weight, height, waist circumference (WC), body fat percent (using bioimpedance), lifestyle behaviors, SUA and blood lipids in 549 participants aged 19-20 years from a population-based cohort study (Seychelles Child Development Study). Mean (s.d.) SUA was higher in males than females, 0.33 (0.08) and 0.24 (0.07) mmol l(-1), respectively. Body mass index (BMI) was higher in females than males but BP was markedly higher in males than in females. SUA was associated with both systolic and diastolic BP. However, the magnitude of the linear regression coefficients relating BP and SUA decreased by up to 50% upon adjustment for BMI, WC or body fat percent. The association between SUA and BP was not altered upon further adjustment for alcohol intake, smoking, triglycerides or renal function. In fully adjusted models, SUA remained associated with BP (P<0.05) in females. In conclusion, adiposity substantially decreased the association between SUA and BP in young adults, and BP was independently associated with SUA in females. These findings suggest a role of adiposity in the link between hyperuricemia and hypertension.
Resumo:
The brain requires a constant and substantial energy supply to maintain its main functions. For decades, it was assumed that glucose was the major if not the only significant source of energy for neurons. This view was supported by the expression of specific facilitative glucose transporters on cerebral blood vessels, as well as neurons. Despite the fact that glucose remains a key energetic substrate for the brain, growing evidence suggests a different scenario. Thus astrocytes, a major type of glial cells that express their own glucose transporter, play a critical role in coupling synaptic activity with glucose utilization. It was shown that glutamatergic activity triggers an enhancement of aerobic glycolysis in this cell type. As a result, lactate is provided to neurons as an additional energy substrate. Indeed, lactate has proven to be a preferential energy substrate for neurons under various conditions. A family of proton-linked carriers known as monocarboxylate transporters has been described and specific members have been found to be expressed by endothelial cells, astrocytes and neurons. Moreover, these transporters are subject to fine regulation of their expression levels and localization, notably in neurons, which suggests that lactate supply could be adjusted as a function of their level of activity. Considering the importance of energetics in the aetiology of several neurodegenerative diseases, a better understanding of its cellular and molecular underpinnings might have important implications for the future development of neuroprotective strategies.
Resumo:
BACKGROUND: Fragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited late-onset neurodegenerative disorder, characterized both by neurological and cognitive deficits. It is caused by the expansion of CGG repeats (55 to 200 repeats) in the noncoding region of the fragile X mental retardation 1 (FMR1) gene. Abnormal immunological patterns are often associated with neurodegenerative disorders and implicated in their etiology. We therefore investigated the immune status of FXTAS patients, which had not been assessed prior to this study. METHOD: Peripheral blood mononuclear cells (PBMCs) were collected from 15 asymptomatic FMR1 premutation carriers and 20 age-matched controls. Concentrations of three cytokines (IL-6, IL-8, IL-10) were measured in PBMC supernatants using ELISA assays. RESULTS: We found a significant increase in the concentration of the major anti-inflammatory cytokine IL-10 in supernatants of PBMCs derived from premutation carriers, when compared with controls (P = 0.019). This increase correlated significantly with the number of CGG repeats (P = 0.002). CONCLUSIONS: Elevated IL-10 levels were observed in all premutation carriers, before appearance of the classical neurological symptoms; therefore, IL-10 may be one of the early biomarkers of FXTAS.
Resumo:
Background: Elevated levels of g-glutamyl transferase (GGT) have been associated with subsequent risk of elevated blood pressure (BP), hypertension and diabetes. However, the causality of these relationships has not been addressed. Mendelian randomization refers to the random allocation of alleles at the time of gamete formation. Such allocation is expected to be independent of any behavioural and environmental factors (known or unknown), allowing the analysis of largely unconfounded risk associations that are not due to reverse causation. Methods: We performed a cross-sectional analysis among 4361 participants to the population based CoLaus study. Associations of sex-specific GGT quartiles with systolic BP, diastolic BP and insulin levels were assessed using multivariable linear regression analyses. The rs2017869 GGT1 variant, which explained 1.6% of the variance in GGT levels, was used as an instrument to perform a Mendelian randomization analysis. Results: Median age of the study population was 53 years. After age and sex adjustment, GGT quartiles were strongly associated with systolic and diastolic BP (all p for linear trend <0.0001). After multivariable adjustment, these relationships were significantly attenuated, but remained significant for systolic (b(95%CI)¼1.30 (0.32;2.03), p¼0.007) and diastolic BP (b (95%CI)¼0.57 (0.02;1.13), p¼0.04). Using Mendelian randomization, we observed no positive association of GGT with either systolic BP (b (95%CI)¼-5.68 (-11.51-0.16), p¼0.06) or diastolic BP (b (95%CI)¼ -2.24 (-5.98;1.49) p¼0.24). The association of GGT with insulin was also attenuated after multivariable adjustment. Nevertheless, a strong linear trend persisted in the fully adjusted model (b (95%CI)¼0.07 (0.04;0.09), p<0.0001). Using Mendelian randomization, we observed a similar positive association of GGT with insulin (b (95%CI)¼0.19 (0.01-0.37), p¼0.04). Conclusion: In this study, we found evidence for a direct causal relationship between GGT and insulin, suggesting that oxidative stress may be causally implicated in the pathogenesis of type 2 diabetes mellitus.
Resumo:
We assessed whether fasting modifies the prognostic value of these measurements for the risk of myocardial infarction (MI). Analyses used mixed effect models and Poisson regression. After confounders were controlled for, fasting triglyceride levels were, on average, 0.122 mmol/L lower than nonfasting levels. Each 2-fold increase in the latest triglyceride level was associated with a 38% increase in MI risk (relative rate, 1.38; 95% confidence interval, 1.26-1.51); fasting status did not modify this association. Our results suggest that it may not be necessary to restrict analyses to fasting measurements when considering MI risk.
Resumo:
The role of the gluco-incretin hormones GIP and GLP-1 in the control of beta cell function was studied by analyzing mice with inactivation of each of these hormone receptor genes, or both. Our results demonstrate that glucose intolerance was additively increased during oral glucose absorption when both receptors were inactivated. After intraperitoneal injections, glucose intolerance was more severe in double- as compared to single-receptor KO mice, and euglycemic clamps revealed normal insulin sensitivity, suggesting a defect in insulin secretion. When assessed in vivo or in perfused pancreas, insulin secretion showed a lack of first phase in Glp-1R(-/-) but not in Gipr(-/-) mice. In perifusion experiments, however, first-phase insulin secretion was present in both types of islets. In double-KO islets, kinetics of insulin secretion was normal, but its amplitude was reduced by about 50% because of a defect distal to plasma membrane depolarization. Thus, gluco-incretin hormones control insulin secretion (a) by an acute insulinotropic effect on beta cells after oral glucose absorption (b) through the regulation, by GLP-1, of in vivo first-phase insulin secretion, probably by an action on extra-islet glucose sensors, and (c) by preserving the function of the secretory pathway, as evidenced by a beta cell autonomous secretion defect when both receptors are inactivated.
Resumo:
BACKGROUND: The extent to which physical performance limitations affect the ability of childhood cancer survivors to reach healthy activity levels is unknown. Therefore this study aims to describe the effect of different types of limitations on activity levels in survivors. PROCEDURE: Within the Swiss Childhood Cancer Survivor Study we sent a questionnaire to all survivors (≥16 years) registered in the Swiss Childhood Cancer Registry, who survived >5 years and were diagnosed 1976-2005 aged <16 years. We measured healthy activity levels using international guidelines and assessed different kinds of performance limitations (visual impairment, weight and endurance problems, cardiorespiratory, musculoskeletal, and neurological problems, pain and fatigue syndromes). RESULTS: The sample included 1,560 survivors (75% response rate), of whom 209 (13.5%) reported they have performance limitations. Forty-two percent of survivors with limitations reached healthy activity levels, compared to 57% of survivors without limitations. Least active were survivors with vision impairments (25% active), weight and endurance problems (27.3%), cardiorespiratory problems (36.4%), and musculoskeletal problems (43.1%). After adjusting for socio-demographic variables and type of cancer, we found that survivors with limitations were 1.4 (95%CI 1.0-2.0; P = 0.047) times more likely to be inactive. CONCLUSIONS: Although many survivors with physical performance limitations maintain healthy activity levels, there is room for improvement. Adapted and targeted physical activity counseling for survivors with performance limitations might help them to raise level of activity and pursue a healthy lifestyle.
Resumo:
Proteins secreted from adipose tissue are increasingly recognized to play an important role in the regulation of glucose metabolism. However, much less is known about their effect on lipid metabolism. The fasting-induced adipose factor (FIAF/angiopoietin-like protein 4/peroxisome proliferator-activated receptor gamma angiopoietin-related protein) was previously identified as a target of hypolipidemic fibrate drugs and insulin-sensitizing thiazolidinediones. Using transgenic mice that mildly overexpress FIAF in peripheral tissues we show that FIAF is an extremely powerful regulator of lipid metabolism and adiposity. FIAF overexpression caused a 50% reduction in adipose tissue weight, partly by stimulating fatty acid oxidation and uncoupling in fat. In addition, FIAF overexpression increased plasma levels of triglycerides, free fatty acids, glycerol, total cholesterol, and high density lipoprotein (HDL)-cholesterol. Functional tests indicated that FIAF overexpression severely impaired plasma triglyceride clearance but had no effect on very low density lipoprotein production. The effects of FIAF overexpression were amplified by a high fat diet, resulting in markedly elevated plasma and liver triglycerides, plasma free fatty acids, and plasma glycerol levels, and impaired glucose tolerance in FIAF transgenic mice fed a high fat diet. Remarkably, in mice the full-length form of FIAF was physically associated with HDL, whereas truncated FIAF was associated with low density lipoprotein. In human both full-length and truncated FIAF were associated with HDL. The composite data suggest that via physical association with plasma lipoproteins, FIAF acts as a powerful signal from fat and other tissues to prevent fat storage and stimulate fat mobilization. Our data indicate that disturbances in FIAF signaling might be involved in dyslipidemia.
Resumo:
OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis.
Resumo:
Hematocrit (Hct) is one of the most critical issues associated with the bioanalytical methods used for dried blood spot (DBS) sample analysis. Because Hct determines the viscosity of blood, it may affect the spreading of blood onto the filter paper. Hence, accurate quantitative data can only be obtained if the size of the paper filter extracted contains a fixed blood volume. We describe for the first time a microfluidic-based sampling procedure to enable accurate blood volume collection on commercially available DBS cards. The system allows the collection of a controlled volume of blood (e.g., 5 or 10 μL) within several seconds. Reproducibility of the sampling volume was examined in vivo on capillary blood by quantifying caffeine and paraxanthine on 5 different extracted DBS spots at two different time points and in vitro with a test compound, Mavoglurant, on 10 different spots at two Hct levels. Entire spots were extracted. In addition, the accuracy and precision (n = 3) data for the Mavoglurant quantitation in blood with Hct levels between 26% and 62% were evaluated. The interspot precision data were below 9.0%, which was equivalent to that of a manually spotted volume with a pipet. No Hct effect was observed in the quantitative results obtained for Hct levels from 26% to 62%. These data indicate that our microfluidic-based sampling procedure is accurate and precise and that the analysis of Mavoglurant is not affected by the Hct values. This provides a simple procedure for DBS sampling with a fixed volume of capillary blood, which could eliminate the recurrent Hct issue linked to DBS sample analysis.
Resumo:
BACKGROUND: Visceral leishmaniasis is a parasitic disease associated with high mortality. The most important foci of visceral leishmaniasis in Ethiopia are in the Northwest and are predominantly associated with high rates of HIV co-infection. Co-infection of visceral leishmaniasis patients with HIV results in higher mortality, treatment failure and relapse. We have previously shown that arginase, an enzyme associated with immunosuppression, was increased in patients with visceral leishmaniasis and in HIV seropositive patients; further our results showed that high arginase activity is a marker of disease severity. Here, we tested the hypothesis that increased arginase activities associated with visceral leishmaniasis and HIV infections synergize in patients co-infected with both pathogens. METHODOLOGY/PRINCIPAL FINDINGS: We recruited a cohort of patients with visceral leishmaniasis and a cohort of patients with visceral leishmaniasis and HIV infection from Gondar, Northwest Ethiopia, and recorded and compared their clinical data. Further, we measured the levels of arginase activity in the blood of these patients and identified the phenotype of arginase-expressing cells. Our results show that CD4(+) T cell counts were significantly lower and the parasite load in the spleen was significantly higher in co-infected patients. Moreover, our results demonstrate that arginase activity was significantly higher in peripheral blood mononuclear cells and plasma of co-infected patients. Finally, we identified the cells-expressing arginase in the PBMCs as low-density granulocytes. CONCLUSION: Our results suggest that increased arginase might contribute to the poor disease outcome characteristic of patients with visceral leishmaniasis and HIV co-infection.
Resumo:
Since new technologies based on solid phase assays (SPA) have been routinely incorporated in the transplant immunology laboratory, the presence of pretransplantation donor-specific antibodies (DSA) against human leukocyte antigen (HLA) molecules has generally been considered as a risk factor for acute rejection (AR) and, in particular, for acute humoral rejection (AHR). We retrospectively studied 113 kidney transplant recipients who had negative prospective T-cell and B-cell complement-dependent cytotoxicity (CDC) crossmatches at the time of transplant. Pretransplantation sera were screened for the presence of circulating anti-HLA antibody and DSA by using highly sensitive and HLA-specific Luminex assay, and the results were correlated with AR and AHR posttransplantation. We found that approximately half of our patient population (55/113, 48.7%) had circulating anti-HLA antibody pretransplantation. Of 113 patients, 11 (9.7%) had HLA-DSA. Of 11 rejection episodes post-transplant, only two patients had pretransplantation DSA, of whom one had a severe AHR (C4d positive). One-year allograft survival was similar between the pretransplantation DSA-positive and -negative groups. Number, class, and intensity of pretransplantation DSA, as well as presensitizing events, could not predict AR. We conclude that, based on the presence of pretransplantation DSA, post-transplantation acute rejections episodes could not have been predicted. The only AHR episode occurred in a recipient with pretransplantation DSA. More work should be performed to better delineate the precise clinical significance of detecting low titers of DSA before transplantation.
Resumo:
The major problems associated with the use of corticosteroids for the treatment of ocular diseases are their poor intraocular penetration to the posterior segment when administered locally and their secondary side effects when given systemically. To circumvent these problems more efficient methods and techniques of local delivery are being developed. The purposes of this study were: (1) to investigate the pharmacokinetics of intraocular penetration of hemisuccinate methyl prednisolone (HMP) after its delivery using the transscleral Coulomb controlled iontophoresis (CCI) system applied to the eye or after intravenous (i.v.) injection in the rabbit, (2) to test the safety of the CCI system for the treated eyes and (3) to compare the pharmacokinetic profiles of HMP intraocular distribution after CCI delivery to i.v. injection. For each parameter evaluated, six rabbit eyes were used. For the CCI system, two concentrations of HMP (62.5 and 150mg ml(-1)), various intensities of current and duration of treatment were analyzed. In rabbits serving as controls the HMP was infused in the CCI device but without applied electric current. For the i.v. delivery, HMP at 10mg kg(-1)as a 62.5mg ml(-1)solution was used. The rabbits were observed clinically for evidence of ocular toxicity. At various time points after the administration of drug, rabbits were killed and intraocular fluids and tissues were sampled for methylprednisolone (MP) concentrations by high pressure liquid chromatography (HPLC). Histology examinations were performed on six eyes of each group. Among groups that received CCI, the concentrations of MP increased in all ocular tissues and fluids in relation to the intensities of current used (0.4, 1.0 and 2.0mA/0.5cm(2)) and its duration (4 and 10min). Sustained and highest levels of MP were achieved in the choroid and the retina of rabbit eyes treated with the highest current and 10min duration of CCI. No clinical toxicity or histological lesions were observed following CCI. Negligible amounts of MP were found in ocular tissues in the CCI control group without application of current. Compared to i.v. administration, CCI achieved higher and more sustained tissue concentrations with negligible systemic absorption. These data demonstrate that high levels of MP can be safely achieved in intraocular tissues and fluids of the rabbit eye, using CCI. With this system, intraocular tissues levels of MP are higher than those achieved after i.v. injection. Furthermore, if needed, the drug levels achieved with CCI can be modulated as a function of current intensity and duration of treatment. CCI could therefore be used as an alternative method for the delivery of high levels of MP to the intraocular tissues of both the anterior and posterior segments.
Resumo:
Ethyl glucuronide (EtG) is a minor and specific metabolite of ethanol. It is incorporated into growing hair, allowing a retrospective detection of alcohol consumption. However, the suitability of quantitative EtG measurements in hair to determine the quantity of alcohol consumed has not clearly been demonstrated yet. The purpose of this study was to evaluate the influence of ethanol dose and hair pigmentation on the incorporation of EtG into rat hair. Ethanol and EtG kinetics in blood were investigated after a single administration of ethanol. Eighteen rats were divided into four groups receiving 0 (control group), 1, 2, or 3g ethanol/kg body weight. Ethanol was administered on 4 consecutive days per week for 3 weeks by intragastric route. Twenty-eight days after the initial ethanol administration, newly grown hair was shaved. Pigmented and nonpigmented hair were analyzed separately by gas chromatography coupled to tandem mass spectrometry. Blood samples were collected within 12h after the ethanol administration. EtG and ethanol blood levels were measured by liquid chromatography coupled to tandem mass spectrometry and headspace gas chromatography-flame ionization detector, respectively. No statistically significant difference was observed in EtG concentrations between pigmented and nonpigmented hair (Spearman's rho=0.95). Thus, EtG incorporation into rat hair was not affected by hair pigmentation. Higher doses of ethanol resulted in greater blood ethanol area under the curve of concentration versus time (AUC) and in greater blood EtG AUC. A positive correlation was found between blood ethanol AUC and blood EtG AUC (Spearman's rho=0.84). Increased ethanol administration was associated with an increased EtG concentration in hair. Blood ethanol AUC was correlated with EtG concentration in hair (Pearson's r=0.89). EtG concentration in rat hair appeared to reflect the EtG concentration in blood. Ethanol was metabolized at a median rate of 0.22 g/kg/h, and the median elimination half-life of EtG was 1.21 h. This study supports that the bloodstream is likely to display a major role in the hair EtG incorporation.