1000 resultados para Beta rays.
Resumo:
We describe experiments designed to produce a bright M-L band x-ray source in the 3-3.5 keV region. Palladium targets irradiated with a 10(15) W cm(-2) laser pulse have previously been shown to convert up to similar to 2% of the laser energy into M-L band x-rays with similar pulse duration to that of the incident laser. This x-ray emission is further characterized here, including pulse duration and source size measurements, and a higher conversion efficiency than previously achieved is demonstrated (similar to 4%) using more energetic and longer duration laser pulses (200 ps). The emission near the aluminium K-edge (1.465-1.550 keV) is also reported for similar conditions, along with the successful suppression of such lower band x-rays using a CH coating on the rear side of the target. The possibility of using the source to radiatively heat a thin aluminium foil sample to uniform warm dense matter conditions is discussed.
Resumo:
Context. The detection and measurement of gamma-ray lines from the decaychain of 56Ni provides unique information about the explosionin supernovae. SN2014J at 3.3 Mpc is a sufficiently-nearby supernova oftype Ia so that such measurements have been feasible with the gamma-rayspectrometer SPI on ESA's INTEGRAL gamma-ray observatory.
Aims:The 56Ni freshly produced in the supernova is understood topower the optical light curve, because it emits gamma rays upon itsradioactive decay first to 56Co and then to 56Fe.Gamma-ray lines from 56Co decay are expected to becomedirectly visible through the white dwarf material several weeks afterthe explosion, as they progressively penetrate the overlying material ofthe supernova envelope, which is diluted as it expands. The lines areexpected to be Doppler-shifted or broadened from the kinematics of the56Ni ejecta. We aim to exploit high-resolution gamma-rayspectroscopy with the SPI spectrometer on INTEGRAL toward constrainingthe 56Ni distribution and kinematics in this supernova.
Methods: We use the observations with the SPI spectrometer onINTEGRAL, together with an improved instrumental background method.
Results: We detect the two main lines from 56Co decay at847 and 1238 keV, which are significantly Doppler-broadened, and atintensities (3.65 ± 1.21) × 10-4 and (2.27± 0.69) × 10-4 ph cm-2s-1, respectively, at their brightness maximum. We measuretheir rise toward a maximum after about 60-100 days and a declinethereafter. The intensity ratio of the two lines is found to beconsistent with expectations from 56Co decay (0.62 ±0.28 at brightness maximum, the expected ratio is 0.68). We find thatthe broad lines seen in the late, gamma-ray transparent phase are notrepresentative of the early gamma-ray emission, and notice instead thatthe emission spectrum is complex and irregular until the supernova isfully transparent to gamma rays, with progressive uncovering of the bulkof 56Ni. We infer that the explosion morphology is notspherically symmetric, both in the distribution of 56Ni andin the unburnt material which occults the 56Co emission.After we compare light curves from different plausible models, theresulting 56Ni mass is determined to be 0.49 ± 0.09M⊙.
Resumo:
β -type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus but is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapour deposition (PVD) and chemical vapour deposition (CVD) are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment. This paper will report the results achieved by a 100 W CW fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using X-ray diffractometry (XRD), optical microscopy (OM), 3-D surface profile & contact angle measurements and nano-indentation test.
Resumo:
The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4 V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti-Nb-Zr-Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4 V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly-developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence x-ray diffraction (GI-XRD) and x-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks’ solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.
Resumo:
The cardiac neuronal nitric-oxide synthase (nNOS) has been described as a modulator of cardiac contractility. We have demonstrated previously that isoform 4b of the sarcolemmal calcium pump (PMCA4b) binds to nNOS in the heart and that this complex regulates beta-adrenergic signal transmission in vivo. Here, we investigated whether the nNOS-PMCA4b complex serves as a specific signaling modulator in the heart. PMCA4b transgenic mice (PMCA4b-TG) showed a significant reduction in nNOS and total NOS activities as well as in cGMP levels in the heart compared with their wild type (WT) littermates. In contrast, PMCA4b-TG hearts showed an elevation in cAMP levels compared with the WT. Adult cardiomyocytes isolated from PMCA4b-TG mice demonstrated a 3-fold increase in Ser(16) phospholamban (PLB) phosphorylation as well as Ser(22) and Ser(23) cardiac troponin I (cTnI) phosphorylation at base line compared with the WT. In addition, the relative induction of PLB phosphorylation and cTnI phosphorylation following isoproterenol treatment was severely reduced in PMCA4b-TG myocytes, explaining the blunted physiological response to the beta-adrenergic stimulation. In keeping with the data from the transgenic animals, neonatal rat cardiomyocytes overexpressing PMCA4b showed a significant reduction in nitric oxide and cGMP levels. This was accompanied by an increase in cAMP levels, which led to an increase in both PLB and cTnI phosphorylation at base line. Elevated cAMP levels were likely due to the modulation of cardiac phosphodiesterase, which determined the balance between cGMP and cAMP following PMCA4b overexpression. In conclusion, these results showed that the nNOS-PMCA4b complex regulates contractility via cAMP and phosphorylation of both PLB and cTnI.
Resumo:
BACKGROUND: Impaired dark adaptation occurs commonly in vitamin A deficiency. OBJECTIVE: We sought to examine the responsiveness of dark-adaptation threshold to vitamin A and beta-carotene supplementation in Nepali women. DESIGN: The dark-adapted pupillary response was tested in 298 pregnant women aged 15-45 y in a placebo-controlled trial of vitamin A and beta-carotene; 131 of these women were also tested at 3 mo postpartum. Results were compared with those for 100 nonpregnant US women of similar age. The amount of light required for pupillary constriction was recorded after bleaching and dark adaptation. RESULTS: Pregnant women receiving vitamin A had better dark-adaptation thresholds (-1.24 log cd/m(2)) than did those receiving placebo (-1.11 log cd/m(2); P: = 0. 03) or beta-carotene (-1.13 log cd/m(2); P: = 0.05) (t tests with Bonferroni correction). Dark-adaptation threshold was associated with serum retinol concentration in pregnant women receiving placebo (P: = 0.001) and in those receiving beta-carotene (P: = 0.003) but not in those receiving vitamin A. Among women receiving placebo, mean dark-adaptation thresholds were better during the first trimester (-1.23 log cd/m(2)) than during the second and third trimesters (-1.03 log cd/m(2); P: = 0.02, t test). The mean threshold of nonpregnant US women (-1.35 log cd/m(2)) was better than that of all 3 Nepali groups (P: < 0.001, t test, for all 3 groups). CONCLUSIONS: During pregnancy, pupillary dark adaptation was strongly associated with serum retinol concentration and improved significantly in response to vitamin A supplementation. This noninvasive testing technique is a valid indicator of population vitamin A status in women of reproductive age.
Resumo:
Beta-type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus and is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapor deposition and chemical vapor deposition are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment. This paper will report the results achieved by a 100 W continuous wave (CW) fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using x-ray diffractometry, optical microscopy, three-dimensional surface profile and contact angle measurements, and nanoindentation test.
Resumo:
γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy.
However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved.
Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16–18 MeV) and ultra-high brilliance (exceeding 1020 photons s−1mm−2mrad−2 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above.
Resumo:
Several forest species are severely affected by Phytophthora cinnamomi. The contribution of this oomycete to forest decline and dieback has been broadly reported. In particular, it is consensual that it is the causal agent of ink disease in Castanea sativa. It has been associated with the severe decline of Quercus species, namely the Q. suber and Q. ilex dieback in Portugal and Spain, and has been responsible for the infection of numerous native species and crops. This pathogen persists in the soil or on plant material in the form of chlamydospores allowing the infection of living root tissues when environmental conditions are favorable. © Microscopy Society of America 2012.
Resumo:
Selenoboranes react with terminal, α, β-di- and trisubstituted epoxides to produce β-hydroxyselenides (or olefins) in the two first cases and allyl alcohols in the last one. A very high stereodescrimination has been observed for α, β-bisubstituted epoxides: the cis epoxide being much more reactive.
Resumo:
Tese de doutoramento, Farmácia (Bioquímica), Universidade de Lisboa, Faculdade de Farmácia, 2014
Resumo:
Desmoid-type fibromatoses are locally aggressive and frequently recurrent tumours, and an accurate diagnosis is essential for patient management. The majority of sporadic lesions harbour beta-catenin (CTNNB1) mutations. We used next-generation sequencing to detect CTNNB1 mutations and to compare the sensitivity and specificity of next-generation sequencing with currently employed mutation detection techniques: mutation-specific restriction enzyme digestion and polymerase chain reaction amplification. DNA was extracted from formalin-fixed paraffin-embedded needle biopsy or resection tissue sections from 144 patients with sporadic desmoid-type fibromatoses, four patients with syndrome-related desmoid-type fibromatoses and 11 morphological mimics. Two primer pairs were designed for CTNNB1 mutation hotspots. Using ≥10 ng of DNA, libraries were generated by Fluidigm and sequenced on the Ion Torrent Personal Genome Machine. Next-generation sequencing had a sensitivity of 92.36 % (133/144, 95 % CIs: 86.74 to 96.12 %) and a specificity of 100 % for the detection of CTNNB1 mutations in desmoid-type fibromatoses-like spindle cell lesions. All mutations detected by mutation-specific restriction enzyme digestion were identified by next-generation sequencing. Next-generation sequencing identified additional mutations in 11 tumours that were not detected by mutation-specific restriction enzyme digestion, two of which have not been previously described. Next-generation sequencing is highly sensitive for the detection of CTNNB1 mutations. This multiplex assay has the advantage of detecting additional mutations compared to those detected by mutation-specific restriction enzyme digestion (sensitivity 82.41 %). The technology requires minimal DNA and is time- and cost-efficient.