941 resultados para Bayesian rationality
Resumo:
We introduce attention games. Alternatives ranked by quality (producers, politicians, sexual partners...) desire to be chosen and compete for the imperfect attention of a chooser by investing in their own salience. We prove that if alternatives can control the attention they get, then ”the showiest is the best”: the equilibrium ordering of salience (weakly) reproduces the quality ranking and the best alternative is the one that gets picked most often. This result also holds under more general conditions. However, if those conditions fail, then even the worst alternative can be picked most often.
Resumo:
An expanding literature articulates the view that Taylor rules are helpful in predicting exchange rates. In a changing world however, Taylor rule parameters may be subject to structural instabilities, for example during the Global Financial Crisis. This paper forecasts exchange rates using such Taylor rules with Time Varying Parameters (TVP) estimated by Bayesian methods. In core out-of-sample results, we improve upon a random walk benchmark for at least half, and for as many as eight out of ten, of the currencies considered. This contrasts with a constant parameter Taylor rule model that yields a more limited improvement upon the benchmark. In further results, Purchasing Power Parity and Uncovered Interest Rate Parity TVP models beat a random walk benchmark, implying our methods have some generality in exchange rate prediction.
Resumo:
This paper develop and estimates a model of demand estimation for environmental public goods which allows for consumers to learn about their preferences through consumption experiences. We develop a theoretical model of Bayesian updating, perform comparative statics over the model, and show how the theoretical model can be consistently incorporated into a reduced form econometric model. We then estimate the model using data collected for two environmental goods. We find that the predictions of the theoretical exercise that additional experience makes consumers more certain over their preferences in both mean and variance are supported in each case.
Resumo:
We develop methods for Bayesian model averaging (BMA) or selection (BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to select between or average over all possible combinations of restricted PVARs where the restrictions involve interdependencies between and heterogeneities across cross-sectional units. The resulting BMA framework can find a parsimonious PVAR specification, thus dealing with overparameterization concerns. We use these methods in an application involving the euro area sovereign debt crisis and show that our methods perform better than alternatives. Our findings contradict a simple view of the sovereign debt crisis which divides the euro zone into groups of core and peripheral countries and worries about financial contagion within the latter group.
Resumo:
We develop methods for Bayesian model averaging (BMA) or selection (BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to select between or average over all possible combinations of restricted PVARs where the restrictions involve interdependencies between and heterogeneities across cross-sectional units. The resulting BMA framework can find a parsimonious PVAR specification, thus dealing with overparameterization concerns. We use these methods in an application involving the euro area sovereign debt crisis and show that our methods perform better than alternatives. Our findings contradict a simple view of the sovereign debt crisis which divides the euro zone into groups of core and peripheral countries and worries about financial contagion within the latter group.
Resumo:
We estimate a New Keynesian DSGE model for the Euro area under alternative descriptions of monetary policy (discretion, commitment or a simple rule) after allowing for Markov switching in policy maker preferences and shock volatilities. This reveals that there have been several changes in Euro area policy making, with a strengthening of the anti-inflation stance in the early years of the ERM, which was then lost around the time of German reunification and only recovered following the turnoil in the ERM in 1992. The ECB does not appear to have been as conservative as aggregate Euro-area policy was under Bundesbank leadership, and its response to the financial crisis has been muted. The estimates also suggest that the most appropriate description of policy is that of discretion, with no evidence of commitment in the Euro-area. As a result although both ‘good luck’ and ‘good policy’ played a role in the moderation of inflation and output volatility in the Euro-area, the welfare gains would have been substantially higher had policy makers been able to commit. We consider a range of delegation schemes as devices to improve upon the discretionary outcome, and conclude that price level targeting would have achieved welfare levels close to those attained under commitment, even after accounting for the existence of the Zero Lower Bound on nominal interest rates.
Resumo:
We analyse the role of time-variation in coefficients and other sources of uncertainty in exchange rate forecasting regressions. Our techniques incorporate the notion that the relevant set of predictors and their corresponding weights, change over time. We find that predictive models which allow for sudden rather than smooth, changes in coefficients significantly beat the random walk benchmark in out-of-sample forecasting exercise. Using innovative variance decomposition scheme, we identify uncertainty in coefficients' estimation and uncertainty about the precise degree of coefficients' variability, as the main factors hindering models' forecasting performance. The uncertainty regarding the choice of the predictor is small.
Resumo:
Time-lapse crosshole ground-penetrating radar (GPR) data, collected while infiltration occurs, can provide valuable information regarding the hydraulic properties of the unsaturated zone. In particular, the stochastic inversion of such data provides estimates of parameter uncertainties, which are necessary for hydrological prediction and decision making. Here, we investigate the effect of different infiltration conditions on the stochastic inversion of time-lapse, zero-offset-profile, GPR data. Inversions are performed using a Bayesian Markov-chain-Monte-Carlo methodology. Our results clearly indicate that considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions
Resumo:
We estimate a New Keynesian DSGE model for the Euro area under alternative descriptions of monetary policy (discretion, commitment or a simple rule) after allowing for Markov switching in policy maker preferences and shock volatilities. This reveals that there have been several changes in Euro area policy making, with a strengthening of the anti-inflation stance in the early years of the ERM, which was then lost around the time of German reunification and only recovered following the turnoil in the ERM in 1992. The ECB does not appear to have been as conservative as aggregate Euro-area policy was under Bundesbank leadership, and its response to the financial crisis has been muted. The estimates also suggest that the most appropriate description of policy is that of discretion, with no evidence of commitment in the Euro-area. As a result although both ‘good luck’ and ‘good policy’ played a role in the moderation of inflation and output volatility in the Euro-area, the welfare gains would have been substantially higher had policy makers been able to commit. We consider a range of delegation schemes as devices to improve upon the discretionary outcome, and conclude that price level targeting would have achieved welfare levels close to those attained under commitment, even after accounting for the existence of the Zero Lower Bound on nominal interest rates.
Resumo:
Time varying parameter (TVP) models have enjoyed an increasing popularity in empirical macroeconomics. However, TVP models are parameter-rich and risk over-fitting unless the dimension of the model is small. Motivated by this worry, this paper proposes several Time Varying dimension (TVD) models where the dimension of the model can change over time, allowing for the model to automatically choose a more parsimonious TVP representation, or to switch between different parsimonious representations. Our TVD models all fall in the category of dynamic mixture models. We discuss the properties of these models and present methods for Bayesian inference. An application involving US inflation forecasting illustrates and compares the different TVD models. We find our TVD approaches exhibit better forecasting performance than several standard benchmarks and shrink towards parsimonious specifications.
Resumo:
In this paper, we forecast EU-area inflation with many predictors using time-varying parameter models. The facts that time-varying parameter models are parameter-rich and the time span of our data is relatively short motivate a desire for shrinkage. In constant coefficient regression models, the Bayesian Lasso is gaining increasing popularity as an effective tool for achieving such shrinkage. In this paper, we develop econometric methods for using the Bayesian Lasso with time-varying parameter models. Our approach allows for the coefficient on each predictor to be: i) time varying, ii) constant over time or iii) shrunk to zero. The econometric methodology decides automatically which category each coefficient belongs in. Our empirical results indicate the benefits of such an approach.