1000 resultados para Bashshar al-Asad
Resumo:
Grey interrelation analysis method was used to study the correlation of Al-anode elements and its galvanic efficiency at 20 degreesC, 40 degreesC and 60 degreesC. Twenty-eight kinds of Al-anodes were made for experiments by the method given by Chinese National Standard GB4948-85 [1] and the correlation degree of elements added in the anodes were calculated. The results showed that the order of elements affecting galvanic efficiency at different temperature is basically the same, and the correlation degree can reflect the variation of Al-anode galvanic efficiency when changing temperature. It is suggested that the elements being added in Al-anode are Zn, In, Ga, Mg.
Resumo:
Hot dip Zn-Al alloy coating performs better than hot dip galvanized coating and 55% Al-Zn-Si coating as well with regard to general seawater corrosion protection. A characterization of the corrosion products on Zn-Al alloy coating immersed in dynamic aerated seawater has been performed mainly based on transmission electron microscopy (TEM) for morphological analysis and X-ray diffraction (XRD) technique for crystalline phase identification. The XRD and TEM analyses showed that the corrosion products mainly were typical nanometer Zn4CO3(OH)(6).H2O, Zn-5(OH)(8)Cl-2 and Zn6Al2CO3(OH)(16). 4H(2)O microcrystals. This probably is connected to the co-precipitation of Zn2+ and Al3+ ions caused by adsorption. Zn-Al alloy coating being suffered seawater attacks, AI(OH)(3) gel was first produced on the coating surface. Zn and Al hydroxides would co-precipitate and form double-hydroxide when the concentration of adsorbed Zn2+ ions by the newly produced gel exceeded the critical degree of supersaturation of the interphase nucleation. However, because the growth of the crystals was too low to keep in step with the nucleation, a layer of nano-crystalline corrosion products were produced on the surface of the coating finally. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
25%Al-Zn alloy coating performs better than hot dip galvanized coating and 55%Al-Zn-Si coating with regard to general seawater corrosion protection. This study deals with the interfacial intermetallic layer's growth, which affects considerably the corrosion resistance and mechanical properties of 25%Al-Zn alloy coatings, by means of three-factor quadratic regressive orthogonal experiments, The regression equation shows that the intermetallic layer thickness decreases rapidly with increasing content of Si added to the Zn-Al alloy bath, increases with rise in bath temperature and prolonging dip time. The most effective factor that determined the thickness of intermetallic layer was the amount of Si added to Zn-Al alloy bath, while the effect of bath temperature and dip time on the thickness of intermetallic layer were not very obvious.
Resumo:
The inhibition effect of nicotinic acid for corrosion of hot dipped Zn and Zn-Al alloy coatings in diluted hydrochloric acid was investigated using quantum chemistry analysis, weight loss test, electrochemical measurement, and scanning electronic microscope (SEM) analysis. Quantum chemistry calculation results showed that nicotinic acid possessed planar structure with a number of active centers, and the populations of the Mulliken charge, the highest occupied molecular orbital (HOMO), and the lowest unoccupied molecular orbital (LUMO) were found mainly focused around oxygen and nitrogen atoms, and the cyclic of the benzene as well. The results of weight loss test and electrochemical measurement indicated that inhibition efficiency (IE%) increased with inhibitor concentration, and the highest inhibition efficiency was up to 96.7%. The corrosion inhibition of these coatings was discussed in terms of blocking the electrode reaction by adsorption of the molecules at the active centers on the electrode surface. It was found that the adsorption of nicotinic acid on coating surface followed Langmuir adsorption isotherm with single molecular layer, and nicotinic acid adsorbed on the coating surface probably by chemisorption. Nicotinic acid, therefore, can act as a good nontoxic corrosion inhibitor for hot dipped Zn and Zn-Al alloy coatings in diluted hydrochloric acid solution. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Simultaneous NO reduction and CO oxidation in the presence of O-2,H2O and SO2 over Cu/Mg/AUO (Cu-cat), Ce/Mg/Al/O (Ce-cat) and Cu/Ce/Mg/Al/O (CuCe-cat) were studied. At low temperatures (<340 degreesC), the presence of O-2 or H2O enhanced the activity of CuCe-cat for NO and CO conversions, but significantly suppressed the activity of Cu-cat and Ce-cat, At high temperature (720 degreesC), the presence of O-2 or H2O had no adverse effect on the NO and CO conversions over these catalysts. The addition of SO2 to NO + CO + O-2 + H2O system had no effect on the, reaction of CO + O-2 over Cu-cat, but deactivated this catalyst for NO + CO and CO + H2O reactions; over Ce-cat, all of these reactions of NO + CO, CO + O-2 and CO + H2O were suppressed significantly; over CuCe-cat, NO + CO and CO + O-2 reactions were not affected while the reaction of CO + H2O was slightly inhibited. (C) 2002 Elsevier Science B.V. All rights reserved.