976 resultados para Basen-Exzisions-Reparatur, Uracil in DNA, Uracil-DNA-Glykosylase, DNA-Reparatur, Genexpression
Resumo:
The use of in situ techniques to detect DNA and RNA sequences has proven to be an invaluable technique with paraffin-embedded tissue. Advances in non-radioactive detection systems have further made these procedures shorter and safer. We report the detection of Trypanosoma cruzi, the causative agent of Chagas disease, via indirect and direct in situ polymerace chain reaction within paraffin-embedded murine cardiac tissue sections. The presence of three T. cruzi specific DNA sequences were evaluated: a 122 base pair (bp) sequence localized within the minicircle network, a 188 bp satellite nuclear repetitive sequence and a 177 bp sequence that codes for a flagellar protein. In situ hybridization alone was sensitive enough to detect all three T. cruzi specific DNA sequences.
Resumo:
The first and second internal transcribed spacer regions (ITS1 and ITS2) of the ribosomal DNA of Biomphalaria tenagophila complex (B. tenagophila, B. occidentalis, and B. t. guaibensis) were sequenced and compared. The alignment lengths of these regions were about 655 bp and 481 bp, respectively. Phylogenetic relationships among the Biomphalaria species were inferred by Maximum Parsimony and Neighbor-joining methods. The phylogenetic trees produced, in most of the cases, were in accordance with morphological systematics and other molecular data previously obtained by polymerase chain reaction and restriction fragment length polymorphism analysis. The present results provide support for the proposal that B. tenagophila represents a complex comprising B. tenagophila, B. occidentalis and B. t. guaibensis.
Detection of Toxoplasma gondii DNA by polymerase chain reaction in experimentally desiccated tissues
Resumo:
Despite toxoplasmosis being a common infection among human and other warm-blooded animals worldwide, there are no findings about Toxoplasma gondii evolutionary forms in ancient populations. The molecular techniques used for amplification of genetic material have allowed recovery of ancient DNA (aDNA) from parasites contained in mummified tissues. The application of polymerase chain reaction (PCR) to paleoparasitological toxoplasmosis research becomes a promising option, since it might allow diagnosis, acquisition of paleoepidemiological data, access to toxoplasmosis information related origin, evolution, and distribution among the ancient populations.Furthermore, it makes possible the analysis of parasite aDNA aiming at phylogenetic studies. To standardize and evaluate PCR applicability to toxoplasmosis paleodiagnostic, an experimental mummification protocol was tested using desiccated tissues from mice infected with the ME49 strain cysts, the chronic infection group (CIG), or infected with tachyzoites (RH strain), the acute infection group (AIG). Tissues were subjected to DNA extraction followed by PCR amplification of T. gondii B1 gene. PCR recovered T. gondii DNA in thigh muscle, encephalon, heart, and lung samples. AIG presented PCR positivity in encephalon, lungs, hearts, and livers. Based on this results, we propose this molecular approach for toxoplasmosis research in past populations.
Resumo:
DNA samples from blood and nasal swabs of 125 healthy household contacts was submitted to amplification by polymerase chain reaction (PCR) using a Mycobacterium leprae-specific sequence as a target for the detection of subclinical infection with M. leprae.All samples were submitted to hybridization analysis in order to exclude any false positive or negative results. Two positive samples were confirmed from blood out of 119 (1.7%) and two positive samples from nasal secretion out of 120 (1.7%). The analysis of the families with positive individuals showed that 2.5% (n = 3) of the contacts were relatives of multibacilary patients while 0.8% of the cases (n = 1) had a paucibacilary as an index case. All positive contacts were followed up and after one year none of them presented clinical signs of the disease. In spite of the PCR sensitivity to detect the presence of the M. leprae in a subclinical stage, this molecular approach did not seem to be a valuable tool to screen household contacts, since we determined a spurious association of the PCR positivity and further development of leprosy.
Resumo:
RESUME La télomérase est une enzyme dite "d'immortalité" qui permet aux cellules de maintenir la longueur de leurs télomères, ce qui confère une capacité de réplication illimitée aux cellules reproductrices et cancéreuses. A l'inverse, les cellules somatiques normales, qui n'expriment pas la télomérase, ont une capacité de réplication limitée. La sous-unité catalytique de la télomérase, hTERT, est définie comme le facteur limitant l'activité télomérasique. Entre activateurs et répresseurs, le rôle de la méthylation de l'ADN et de l'acétylation des histones, de nombreux modèles ont été suggérés. La découverte de l'implication de CTCF dans la régulation transcriptionnelle de hTERT explique en partie le mécanisme de répression de la télomérase dans la plupart des cellules somatiques et sa réactivation dans les cellules tumorales. Dans les cellules télomérase-positives, l'activité inhibitrice de CTCF est bloquée par un mécanisme dépendent ou non de la méthylation. Dans la plupart des carcinomes, une hyperméthylation de la région 5' de hTERT bloque l'effet inhibiteur de CTCF, alors qu'une petite région hypométhylée permet un faible niveau de transcription du gène. Nous avons démontré que la protéine MBD2 se lie spécifiquement sur la région 5' méthylée de hTERT dans différentes lignées cellulaires et qu'elle est impliquée dans la répression partielle de la transcription de hTERT dans les cellules tumorales méthylées. Par contre, nous avons montré que dans les lymphocytes B normaux et néoplasiques, la régulation de hTERT est indépendante de la méthylation. Dans ces cellules, le facteur PAX5 se lie sur la région 5' de hTERT en aval du site d'initiation de la traduction (ATG). L'expression exogène de PAX5 dans les cellules télomérase-négatives active la transcription de hTERT, alors que la répression de PAX5 dans les cellules lymphomateuses inhibe la transcription du gène. PAX5 est donc directement impliqué dans l'activation de l'expression de hTERT dans les lymphocytes B exprimant la télomérase. Ces résultats révèlent des différences entre les niveaux de méthylation de hTERT dans les cellules de carcinomes et les lymphocytes B exprimant la télomérase. La méthylation de hTERT en tant que biomarqueur de cancer a été évaluée, puis appliquée à la détection de métastases. Nous avons ainsi montré que la méthylation de hTERT est positivement corrélée au diagnostic cytologique dans les liquides céphalorachidiens. Nos résultats conduisent à un modèle de régulation de hTERT, qui aide à comprendre comment la transcription de ce gène est régulée par CTCF, avec un mécanisme lié ou non à la méthylation du gène hTERT. La méthylation de hTERT s'est aussi révélée être un nouveau et prometteur biomarqueur de cancer. SUMMARY Human telomerase is an "immortalizing" enzyme that enables cells to maintain telomere length, allowing unlimited replicative capacity to reproductive and cancer cells. Conversely, normal somatic cells that do not express telomerase have a finite replicative capacity. The catalytic subunit of telomerase, hTERT, is defined as the limiting factor for telomerase activity. Between activators and repressors, and the role of DNA methylation and histone acetylation, an abundance of hTERT regulatory models have been suggested. The discovery of the implication of CTCF in the transcriptional regulation of hTERT in part explained the mechanism of silencing of telomerase in most somatic cells and its reactivation in neoplastic cells. In telomerase-positive cells, the inhibitory activity of CTCF is blocked by methylation-dependent and -independent mechanisms. In most carcinoma cells, hypermethylation of the hTERT 5' region has been shown to block the inhibitory effect of CTCF, while a short hypomethylated region allows a low transcription level of the gene. We have demonstrated that MBD2 protein specifically binds the methylated 5' region of hTERT in different cell lines and is therefore involved in the partial repression of hTERT transcription in methylated tumor cells. In contrast, we have shown that in normal and neoplastic B cells, hTERT regulation is methylation-independent. The PAX5 factor has been shown to bind to the hTERT 5'region downstream of the ATG translational start site. Ectopic expression of PAX5 in telomerase-negative cells or repression of PAX5 expression in B lymphoma cells respectively activated and repressed hTERT transcription. Thus, PAX5 is strongly implicated in hTERT expression activation in telomerase-positive B cells. These results reveal differences between the hTERT methylation patterns in telomerase-positive carcinoma cells and telomerase-positive normal B cells. The potential of hTERT methylation as a cancer biomarker was evaluated and applied to the detection of metastasis. We have shown that hTERT methylation correlates with the cytological diagnosis in cerebrospinal fluids. Our results suggest a model of hTERT gene regulation, which helps us to better understand how hTERT transcription is regulated by CTCF in methylation-dependant and independent mechanisms. Our data also indicate that hTERT methylation is a promising new cancer biomarker.
Resumo:
Molecular evidence showed 46.2% of Trypanosoma cruzi infection in Mepraia spinolai insects from North-Central Chile, which is significantly higher than previous reports of up to 26% by microscopic observation. Our results show similar infection levels among nymphal stages, ranging from 38.3 to 54.1%, indicating that younger nymphs could be as important as older ones in parasite transmission. A cautionary note must be stressed to indicate the potential role of M. spinolai in transmitting T. cruzi in country areas due to the high infection level detected by molecular analysis.
Resumo:
The expression of a hybrid gene formed by the promoter region of the Xenopus laevis vitellogenin gene B1 and the CAT coding region is regulated by estrogen when the gene is transfected into hormone-responsive MCF-7 cells. Furthermore, the 5' flanking region of the gene B1 alone can confer inducibility to heterologous promoters, although to a varying extent depending on the promoter used. Deletion mapping of he vitellogenin hormone-responsive sequences revealed that a 13 bp element 5'-AGTCACTGTGACC-3' at position -334 is essential for estrogen inducibility. We have shown previously that this 13 bp element is present upstream of several liver-specific estrogen-inducible genes.
Resumo:
Recent work has demonstrated that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron-transport chain triggers several pathways of injury [(protein kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product formation (AGE)] involved in the pathogenesis of diabetic complications by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). PARP activation, on one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. On the other hand, PARP activation results in inhibition of GAPDH by poly-ADP-ribosylation. These processes result in acute endothelial dysfunction in diabetic blood vessels, which importantly contributes to the development of various diabetic complications. Accordingly, hyperglycemia-induced activation of PKC and AGE formation are prevented by inhibition of PARP activity. Furthermore, inhibition of PARP protects against diabetic cardiovascular dysfunction in rodent models of cardiomyopathy, nephropathy, neuropathy, and retinopathy. PARP activation is also present in microvasculature of human diabetic subjects. The present review focuses on the role of PARP in diabetic complications and emphasizes the therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.
Biological embedding of early life exposures and disease risk in humans: a role for DNA methylation.
Resumo:
BACKGROUND: Following wider acceptance of "the thrifty phenotype" hypothesis and the convincing evidence that early life exposures can influence adult health even decades after the exposure, much interest has been placed on the mechanisms through which early life exposures become biologically embedded. METHODS: In this review, we summarize the current literature regarding biological embedding of early life experiences. To this end we conducted a literature search to identify studies investigating early life exposures in relation to DNA methylation changes. In addition, we summarize the challenges faced in investigations of epigenetic effects, stemming from the peculiarities of this emergent and complex field. A proper systematic review and meta-analyses were not feasible given the nature of the evidence. RESULTS: We identified 7 studies on early life socioeconomic circumstances, 10 studies on childhood obesity, and 6 studies on early life nutrition all relating to DNA methylation changes that met the stipulated inclusion criteria. The pool of evidence gathered, albeit small, favours a role of epigenetics and DNA methylation in biological embedding, but replication of findings, multiple comparison corrections, publication bias, and causality are concerns remaining to be addressed in future investigations. CONCLUSIONS: Based on these results, we hypothesize that epigenetics, in particular DNA methylation, is a plausible mechanism through which early life exposures are biologically embedded. This review describes the current status of the field and acts as a stepping stone for future, better designed investigations on how early life exposures might become biologically embedded through epigenetic effects. This article is protected by copyright. All rights reserved.
Resumo:
The horizontal transfer of Trypanosoma cruzi mitochondrial minicircle DNA to the genomes of naturally infected humans may play an important role in the pathogenesis of Chagas disease. Minicircle integrations within LINE-1 elements create the potential for foreign DNA mobility within the host genome via the machinery associated with this retrotransposon. Here we document integration of minicircle DNA fragments in clonal human macrophage cell lines and their mobilization over time. The movement of an integration event in a clonal transfected cell line was tracked at three months and three years post-infection. The minicircle sequence integrated into a LINE-1 retrotransposon; one such foreign fragment subsequently relocated to another genomic location in association with associated LINE-1 elements. The p15 locus was altered at three years as a direct effect of minicircle/LINE-1 acquisition, resulting in elimination of p15 mRNA. Here we show for the first time a molecular pathology stemming from mobilization of a kDNA/LINE-1 mutation. These genomic changes and detected transcript variations are consistent with our hypothesis that minicircle integration is a causal component of parasite-independent, autoimmune-driven lesions seen in the heart and other target tissues associated with Chagas disease.
Resumo:
In the course of its complex life cycle, the parasite Schistosoma mansoni need to adapt to distinct environments, and consequently is exposed to various DNA damaging agents. The Schistosoma genome sequencing initiative has uncovered sequences from genes and transcripts related to the process of DNA damage tolerance as the enzymes UBC13, MMS2, and RAD6. In the present work, we evaluate the importance of this process in different stages of the life cycle of this parasite. The importance is evidenced by expression and phylogenetic profiles, which show the conservation of this pathway from protozoa to mammalians on evolution.
Resumo:
Aspergillus flavus is a very important toxigenic fungus that produces aflatoxins, a group of extremely toxic substances to man and animals. Toxigenic fungi can grow in feed crops, such as maize, peanuts, and soybeans, being thus of high concern for public health. There are toxigenic and non-toxigenic A. flavus variants, but the necessary conditions for expressing the toxigenic potential are not fully understood. Therefore, we have studied total-DNA polymorphism from toxigenic and non toxigenic A. flavus strains isolated from maize crops and soil at two geographic locations, 300 km apart, in the Southeast region of Brazil. Total DNA from each A. flavus isolate was extracted and subjected to polymerase chain reaction amplification with five randomic primers through the RAPD (random amplified polymorphic DNA) technique. Phenetic and cladistic analyses of the data, based on bootstrap analyses, led us to conclude that RAPD was not suitable to discriminate toxigenic from non toxigenic strains. But the present results support the use of RAPD for strain characterization, especially for preliminary evaluation over extensive collections.
Resumo:
Anopheles darlingi is the most important Brazilian malaria vector, with a widespread distribution in the Amazon forest. Effective strategies for vector control could be better developed through knowledge of its genetic structure and gene flow among populations, to assess the vector diversity and competence in transmitting Plasmodium. The aim of this study was to assess the genetic diversity of An. darlingi collected at four locations in Porto Velho, by sequencing a fragment of the ND4 mitochondrial gene. From 218 individual mosquitoes, we obtained 20 different haplotypes with a diversity index of 0.756, equivalent to that found in other neotropical anophelines. The analysis did not demonstrate significant population structure. However, haplotype diversity within some populations seems to be over-represented, suggesting the presence of sub-populations, but the presence of highly represented haplotypes complicates this analysis. There was no clear correlation among genetic and geographical distance and there were differences in relation to seasonality, which is important for malarial epidemiology.
Resumo:
This study compared the humoral immune response against the nucleocapsid-(N) protein of canine distemper virus (CDV) of dogs vaccinated with a multivalent vaccine against parvo-, adeno-, and parainfluenza virus and leptospira combined with either the attenuated CDV Onderstepoort strain (n = 15) or an expression plasmid containing the N-gene of CDV (n = 30). The vaccinations were applied intramuscularly three times at 2-week intervals beginning at the age of 6 weeks. None of the pre-immune sera recognized the recombinant N-protein, confirming the lack of maternal antibodies at this age. Immunization with DNA vaccine for CDV resulted in positive serum N-specific IgG response. However, their IgG (and IgA) titres were lower than those of CDV-vaccinated dogs. Likewise, DNA-vaccinated dogs did not show an IgM peak. There was no increase in N-specific serum IgE titres in either group. Serum titres to the other multivalent vaccine components were similar in both groups.
Delay in maturation of the submandibular gland in Chagas disease correlates with lower DNA synthesis
Resumo:
It has been demonstrated that the acute phase of Trypanosoma cruzi infection promotes several changes in the oral glands. The present study examined whether T. cruzi modulates the expression of host cell apoptotic or mitotic pathway genes. Rats were infected with T. cruzi then sacrificed after 18, 32, 64 or 97 days, after which the submandibular glands were analyzed by immunohistochemistry. Immunohistochemical analyses using an anti-bromodeoxyuridine antibody showed that, during acute T. cruzi infection, DNA synthesizing cells in rat submandibular glands were lower than in non-infected animals (p < 0.05). However, after 64 days of infection (chronic phase), the number of immunolabeled cells are similar in both groups. However, immunohistochemical analysis of Fas and Bcl-2 expression did not find any difference between infected and non-infected animals in both the acute and chronic stages. These findings suggest that the delay in ductal maturation observed at the acute phase of Chagas disease is correlated with lower expression of DNA synthesis genes, but not apoptotic genes.