953 resultados para BICARBONATE ABSORPTION
Resumo:
It is shown that restoration of photoinduced electron flow and O2 evolution with Mn2+ in Mn-depleted photosystem II (PSII) membrane fragments isolated from spinach chloroplasts is considerably increased with bicarbonate in the region pH 5.0–8.0 in bicarbonate-depleted medium. In buffered solutions equilibrated with the atmosphere (nondepleted of bicarbonate), the bicarbonate effect is observed only at pH lower than the pK of H2CO3 dissociation (6.4), which indicates that HCO3− is the essential species for the restoration effect. The addition of just 2 Mn2+ atoms per one PSII reaction center is enough for the maximal reactivation when bicarbonate is present in the medium. Analysis of bicarbonate concentration dependence of the restoration effect reveals two binding sites for bicarbonate with apparent dissociation constant (Kd) of ≈2.5 μM and 20–34 μM when 2,6-dichloro-p-benzoquinone is used as electron acceptor, while in the presence of silicomolybdate only the latter one remains. Similar bicarbonate concentration dependence of O2 evolution was obtained in untreated Mn-containing PSII membrane fragments. It is suggested that the Kd of 20–34 μM is associated with the donor side of PSII while the location of the lower Kd binding site is not quite clear. The conclusion is made that bicarbonate is an essential constituent of the water-oxidizing complex of PSII, important for its assembly and maintenance in the functionally active state.
Resumo:
The sulfur K-edge x-ray absorption spectra for the amino acids cysteine and methionine and their corresponding oxidized forms cystine and methionine sulfoxide are presented. Distinct differences in the shape of the edge and the inflection point energy for cysteine and cystine are observed. For methionine sulfoxide the inflection point energy is 2.8 eV higher compared with methionine. Glutathione, the most abundant thiol in animal cells, also has been investigated. The x-ray absorption near-edge structure spectrum of reduced glutathione resembles that of cysteine, whereas the spectrum of oxidized glutathione resembles that of cystine. The characteristic differences between the thiol and disulfide spectra enable one to determine the redox status (thiol to disulfide ratio) in intact biological systems, such as unbroken cells, where glutathione and cyst(e)ine are the two major sulfur-containing components. The sulfur K-edge spectra for whole human blood, plasma, and erythrocytes are shown. The erythrocyte sulfur K-edge spectrum is similar to that of fully reduced glutathione. Simulation of the plasma spectrum indicated 32% thiol and 68% disulfide sulfur. The whole blood spectrum can be simulated by a combination of 46% disulfide and 54% thiol sulfur.
Resumo:
The equation ∂tu = u∂xx2u − (c − 1)(∂xu)2 is known in literature as a qualitative mathematical model of some biological phenomena. Here this equation is derived as a model of the groundwater flow in a water-absorbing fissurized porous rock; therefore, we refer to this equation as a filtration-absorption equation. A family of self-similar solutions to this equation is constructed. Numerical investigation of the evolution of non-self-similar solutions to the Cauchy problems having compactly supported initial conditions is performed. Numerical experiments indicate that the self-similar solutions obtained represent intermediate asymptotics of a wider class of solutions when the influence of details of the initial conditions disappears but the solution is still far from the ultimate state: identical zero. An open problem caused by the nonuniqueness of the solution of the Cauchy problem is discussed.
Resumo:
Primary distal renal tubular acidosis (dRTA) is characterized by reduced ability to acidify urine, variable hyperchloremic hypokalemic metabolic acidosis, nephrocalcinosis, and nephrolithiasis. Kindreds showing either autosomal dominant or recessive transmission are described. Mutations in the chloride-bicarbonate exchanger AE1 have recently been reported in four autosomal dominant dRTA kindreds, three of these altering codon Arg589. We have screened 26 kindreds with primary dRTA for mutations in AE1. Inheritance was autosomal recessive in seventeen kindreds, autosomal dominant in one, and uncertain due to unknown parental phenotype or sporadic disease in eight kindreds. No mutations in AE1 were detected in any of the autosomal recessive kindreds, and analysis of linkage showed no evidence of linkage of recessive dRTA to AE1. In contrast, heterozygous mutations in AE1 were identified in the one known dominant dRTA kindred, in one sporadic case, and one kindred with two affected brothers. In the dominant kindred, the mutation Arg-589/Ser cosegregated with dRTA in the extended pedigree. An Arg-589/His mutation in the sporadic case proved to be a de novo mutation. In the third kindred, affected brothers both have an intragenic 13-bp duplication resulting in deletion of the last 11 amino acids of AE1. These mutations were not detected in 80 alleles from unrelated normal individuals. These findings underscore the key role of Arg-589 and the C terminus in normal AE1 function, and indicate that while mutations in AE1 cause autosomal dominant dRTA, defects in this gene are not responsible for recessive disease.
Resumo:
Pendrin is an anion transporter encoded by the PDS/Pds gene. In humans, mutations in PDS cause the genetic disorder Pendred syndrome, which is associated with deafness and goiter. Previous studies have shown that this gene has a relatively restricted pattern of expression, with PDS/Pds mRNA detected only in the thyroid, inner ear, and kidney. The present study examined the distribution and function of pendrin in the mammalian kidney. Immunolocalization studies were performed using anti-pendrin polyclonal and monoclonal antibodies. Labeling was detected on the apical surface of a subpopulation of cells within the cortical collecting ducts (CCDs) that also express the H+-ATPase but not aquaporin-2, indicating that pendrin is present in intercalated cells of the CCD. Furthermore, pendrin was detected exclusively within the subpopulation of intercalated cells that express the H+-ATPase but not the anion exchanger 1 (AE1) and that are thought to mediate bicarbonate secretion. The same distribution of pendrin was observed in mouse, rat, and human kidney. However, pendrin was not detected in kidneys from a Pds-knockout mouse. Perfused CCD tubules isolated from alkali-loaded wild-type mice secreted bicarbonate, whereas tubules from alkali-loaded Pds-knockout mice failed to secrete bicarbonate. Together, these studies indicate that pendrin is an apical anion transporter in intercalated cells of CCDs and has an essential role in renal bicarbonate secretion.
Resumo:
We investigated Zn compartmentation in the root, Zn transport into the xylem, and Zn absorption into leaf cells in Thlaspi caerulescens, a Zn-hyperaccumulator species, and compared them with those of a related nonaccumulator species, Thlaspi arvense. 65Zn-compartmental analysis conducted with roots of the two species indicated that a significant fraction of symplasmic Zn was stored in the root vacuole of T. arvense, and presumably became unavailable for loading into the xylem and subsequent translocation to the shoot. In T. caerulescens, however, a smaller fraction of the absorbed Zn was stored in the root vacuole and was readily transported back into the cytoplasm. We conclude that in T. caerulescens, Zn absorbed by roots is readily available for loading into the xylem. This is supported by analysis of xylem exudate collected from detopped Thlaspi species seedlings. When seedlings of the two species were grown on either low (1 μm) or high (50 μm) Zn, xylem sap of T. caerulescens contained approximately 5-fold more Zn than that of T. arvense. This increase was not correlated with a stimulated production of any particular organic or amino acid. The capacity of Thlaspi species cells to absorb 65Zn was studied in leaf sections and leaf protoplasts. At low external Zn levels (10 and 100 μm), there was no difference in leaf Zn uptake between the two Thlaspi species. However, at 1 mm Zn2+, 2.2-fold more Zn accumulated in leaf sections of T. caerulescens. These findings indicate that altered tonoplast Zn transport in root cells and stimulated Zn uptake in leaf cells play a role in the dramatic Zn hyperaccumulation expressed in T. caerulescens.
Resumo:
The x-ray absorption fine structure (XAFS) zinc K-edge steps for intact stages I,II and V,VI Xenopus laevis oocytes demonstrate that the zinc concentration is about 3 and 1 mM, respectively. However, the chi(k) function for the early stage oocytes differs markedly from that for the late one. Analysis of the XAFS data for stage I,II oocytes indicates that zinc is bound to 2.0 +/- 0.5 sulfur atoms at an average coordination distance of 2.29 +/- 0.02 angstroms and 2.0 +/- 0.5 nitrogen or oxygen (N/O) atoms at 2.02 +/- 0.02 angstroms. In marked contrast, in stage V,VI oocytes, zinc is bound to 4.1 +/- 0.4 N/O atoms at an average distance of 1.98 +/- 0.01 angstroms. Our previous studies demonstrated that 90% of the zinc in stage VI oocytes is sequestered within yolk platelets, associated with a single molecule, lipovitellin, the proteolytically processed product of vitellogenin. XAFS analysis of yolk platelets, lipovitellin, and vitellogenin demonstrates that zinc is bound to 4.0 +/- 0.5 N/O ligands at an average distance of 1.98 +/- 0.01 angstroms in each case, identical to that of stage V,VI oocytes. The higher shell contributions in the Fourier transforms indicate that two of the N/O zinc ligands are His in both stage V,VI and I,II oocytes. The results show that in stage I,II oocytes, there is a high concentration of a zinc protein whose zinc coordination site likely is composed of (His)2(Cys)2, such as, e.g., TFIIIA. As the oocytes develop, the predominant zinc species becomes one that exhibits the (His)2(N/0)2 zinc site found in lipovitellin. Hence, the ligands to the zinc atoms in intact oocytes and the changes that take place as a function of oogenesis and after their fertilization, during embryogenesis, now can be examined and explored.
Resumo:
This study examines the question of whether apolipoprotein E (apoE) alters steady-state concentrations of plasma cholesterol carried in low density lipoproteins (LDL-C) by acting as a competitive inhibitor of hepatic LDL uptake or by altering the rate of net cholesterol delivery from the intestinal lumen to the liver. To differentiate between these two possibilities, rates of cholesterol absorption and synthesis and the kinetics of hepatic LDL-C transport were measured in vivo in mice with either normal (apoE+/+) or zero (apoE-/-) levels of circulating apoE. Rates of cholesterol absorption were essentially identical in both genotypes and equaled approximately 44% of the daily dietary load of cholesterol. This finding was consistent with the further observation that the rates of cholesterol synthesis in the liver (approximately 2,000 nmol/h) and extrahepatic tissues (approximately 3,000 nmol/h) were also essentially identical in the two groups of mice. However, the apparent Michaelis constant for receptor-dependent hepatic LDL-C uptake was markedly lower in the apoE-/- mice (44 +/- 4 mg/dl) than in the apoE+/+ animals (329 +/- 77 mg/dl) even though the maximal transport velocity for this uptake process was essentially the same (approximately 400 micrograms/h per g) in the two groups of mice. These studies, therefore, demonstrate that apoE-containing lipoproteins can act as potent competitive inhibitors of hepatic LDL-C transport and so can significantly increase steady-state plasma LDL-C levels. This apolipoprotein plays no role, however, in the regulation of cholesterol absorption, sterol biosynthesis, or hepatic LDL receptor number, at least in the mouse.
Resumo:
The role of basolateral membrane Na+/H+ exchange in transepithelial HCO3- absorption (JHCO3) was examined in the isolated, perfused medullary thick ascending limb (MTAL) of the rat. In Na(+)-free solutions, addition of Na+ to the bath resulted in a rapid, amiloride-sensitive increase in intracellular pH. In MTALs perfused and bathed with solutions containing 146 mM Na+ and 25 mM HCO3-, bath addition of amiloride (1 mM) or 5-(N-ethyl-N-isopropyl) amiloride (EIPA, 50 microM) reversibly inhibited JHCO3 by 50%. Evidence that the inhibition of JHCO3 by bath amiloride was the result of inhibition of Na+/H+ exchange included the following: (i) the IC50 for amiloride was 5-10 microM, (ii) EIPA was a 50-fold more potent inhibitor than amiloride, (iii) the inhibition by bath amiloride was Na+ dependent, and (iv) significant inhibition was observed with EIPA as low as 0.1 microM. Fifty micromolar amiloride or 1 microM EIPA inhibited JHCO3 by 35% when added to the bath but had no effect when added to the tubule lumen, indicating that addition of amiloride to the bath did not directly inhibit apical membrane Na+/H+ exchange. In experiments in which apical Na+/H+ exchange was assessed from the initial rate of cell acidification following luminal EIPA addition, bath EIPA secondarily inhibited apical Na+/H+ exchange activity by 46%. These results demonstrate basolateral membrane Na+/H+ exchange enhances transepithelial HCO3- absorption in the MTAL. This effect appears to be the result of cross-talk in which an increase in basolateral membrane Na+/H+ exchange activity secondarily increases apical membrane Na+/H+ exchange activity.
Resumo:
The use of computer programs to predict drug absorption in humans and to simulate dissolution profiles has become a valuable tool in the pharmaceutical area. The objective of this study was to use in silico methods through software GastroPlusTM and DDDPlusTM to simulate drug absorption curves and dissolution profiles, and to establish in vitro-in vivo correlations (IVIVCs). The work presented herein is divided into five chapters and includes the drugs ketoprofen, pyrimethamine, metronidazole, fluconazole, carvedilol and doxazosin. In Chapter 1, simulated plasma curves for ketoprofen matrix tablets are presented and IVIVC was established. The use of simulated intrinsic dissolution tests for pyrimethamine and metronidazole as a tool for biopharmaceutics classification is detailed in Chapter 2. In Chapter 3, simulation of plasma curves for fluconazole capsules with different dissolution profiles is demonstrated as a tool for biowaiver. IVIVC studies were also conducted for carvedilol immediate-release tablets from dissolution profiles in Chapter 4. Chapter 5 covers the application of simulated dissolution tests for development of doxazosin extended-release formulations. Simulation of plasma curves and IVIVC using the software GastroPlusTM as well as intrinsic dissolution tests and dissolution profiles using the software DDDPlusTM proved to be a tool of wide application in predicting biopharmaceutical characteristics of drugs and formulations, allowing the reduction of time and costs of experimental laboratory work.
Resumo:
We prove global existence of nonnegative solutions to the one dimensional degenerate parabolic problems containing a singular term. We also show the global quenching phenomena for L1 initial datums. Moreover, the free boundary problem is considered in this paper.
Resumo:
We consider exciton optical absorption in quasiperiodic lattices, focusing our attention on the Fibonacci case as a typical example. The absorption spectrum is evaluated by solving numerically the equation of motion of the Frenkel-exciton problem on the lattice, in which on-site energies take on two values according to the Fibonacci sequence. We find that the quasiperiodic order causes the occurrence of well-defined characteristic features in the absorption spectra. We also develop an analytical method that relates satellite lines with the Fourier pattern of the lattice. Our predictions can be used to determine experimentally the long-range quasiperiodic order from optical measurements.
Resumo:
With x-ray absorption spectroscopy and polarized neutron reflectometry we studied how the magnetic proximity effect at the interface between the cuprate high-TC superconductor YBa_(2)Cu_(3)O_(7) (YBCO) and the ferromagnet La_(2/3)Ca_(1/3)MnO_(3) (LCMO) is related to the electronic and magnetic properties of the LCMO layers. In particular, we explored how the magnitude of the ferromagnetic Cu moment on the YBCO side depends on the strength of the antiferromagnetic (AF) exchange coupling with the Mn moment on the LCMO side. We found that the Cu moment remains sizable if the AF coupling with the Mn moments is strongly reduced or even entirely suppressed. The ferromagnetic order of the Cu moments thus seems to be intrinsic to the interfacial CuO_(2) planes and related to a weakly ferromagnetic intraplanar exchange interaction. The latter is discussed in terms of the partial occupation of the Cu 3d_(3z^(2)−r^(2)) orbitals, which occurs in the context of the so-called orbital reconstruction of the interfacial Cu ions.