987 resultados para BASE DAMAGE
Resumo:
The technique of Subcarrier Modulation is assessed by statistical analysis as a viable solution to broadband data transmission over dispersion limited multimode fibre. It is shown that a suitable passband region for transmission of 2.5 Gb/s channels exists at 5 GHz in greater than 80% of worst-case fibres under standard SMF/MMF launch conditions. ©2002 Optical Society of America.
Resumo:
Bone as most of living tissues is able, during its entire lifetime, to adapt its internal microstructure and subsequently its associated mechanical properties to its specific mechanical and physiological environment in a process commonly known as bone remodelling. Bone is therefore continuously renewed and micro-damage, accumulated by fatigue or creep, is removed minimizing the risk of fracture. Nevertheless, bone is not always able to repair itself completely. Actually, if bone repairing function is slower than micro-damage accumulation, a type of bone fracture, usually known as "stress fracture", can finally evolve. In this paper, we propose a bone remodelling continuous model able to simulate micro-damage growth and repair in a coupled way and able therefore to predict the occurrence of "stress fractures". The biological bone remodelling process is modelled in terms of equations that describe the activity of basic multicellular units. The predicted results show a good correspondence with experimental and clinical data. For example, in disuse, bone porosity increases until an equilibrium situation is achieved. In overloading, bone porosity decreases unless the damage rate is so high that causes resorption or "stress fracture".
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Early in 1993, Cyclone Kina struck the Fiji Islands, causing more than $100 million in property damage and damaging the coral environment as well. A few days after the cyclone, the most damaged reef was studied. The same reef had been studied 6 months before. This reef crest is dominated by Acropora. Comparison showed that 80-90% of the Acropora was torn from the outer reef and deposited in the inner lagoon. ... It is estimated that it will take a few years to 30 years for the reef to recover to pre-Kina conditions.