938 resultados para Autocatalytic kinetics
Resumo:
Experimental time series for a nonequilibrium reaction may in some cases contain sufficient data to determine a unique kinetic model for the reaction by a systematic mathematical analysis. As an example, a kinetic model for the self-assembly of microtubules is derived here from turbidity time series for solutions in which microtubules assemble. The model may be seen as a generalization of Oosawa's classical nucleation-polymerization model. It reproduces the experimental data with a four-stage nucleation process and a critical nucleus of 15 monomers.
Resumo:
In the present study, we have determined the kinetics of constitutive expression of a panel of cytokines [interleukin (IL) 2, IL-4, IL-6, IL-10, interferon gamma (IFN-gamma), and tumor necrosis factor alpha (TNF-alpha)] in sequential peripheral blood mononuclear cell samples from nine individuals with primary human immunodeficiency virus infection. Expression of IL-2 and IL-4 was barely detected in peripheral blood mononuclear cells. However, substantial levels of IL-2 expression were found in mononuclear cells isolated from lymph node. Expression of IL-6 was detected in only three of nine patients, and IL-6 expression was observed when transition from the acute to the chronic phase had already occurred. Expression of IL-10 and TNF-alpha was consistently observed in all patients tested, and levels of both cytokines were either stable or progressively increased over time. Similar to IL-10 and TNF-alpha, IFN-gamma expression was detected in all patients; however, in five of nine patients, IFN-gamma expression peaked very early during primary infection. The early peak in IFN-gamma expression coincided with oligoclonal expansions of CD8+ T cells in five of six patients, and CD8+ T cells mostly accounted for the expression of this cytokine. These results indicate that high levels of expression of proinflammatory cytokines are associated with primary infection and that the cytokine response during this phase of infection is strongly influenced by oligoclonal expansions of CD8+ T cells.
Resumo:
In the cortex fast excitatory synaptic currents onto excitatory pyramidal neurons and inhibitory nonpyramidal neurons are mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors exhibiting cell-type-specific differences in their kinetic properties. AMPA receptors consist of four subunits (GluR1-4), each existing as two splice variants, flip and flop, which critically affect the desensitization properties of receptors expressed in heterologous systems. Using single cell reverse transcription PCR to analyze the mRNA of AMPA receptor subunits expressed in layers I-III neocortical neurons, we find that 90% of the GluR1-4 in nonpyramidal neurons are flop variants, whereas 92% of the GluR1-4 in pyramidal neurons are flip variants. We also find that nonpyramidal neurons predominantly express GluR1 mRNA (GluR1/GluR1-4 = 59%), whereas pyramidal neurons contain mainly GluR2 mRNA (GluR2/GluR1-4 = 59%). However, the neuron-type-specific splicing is exhibited by all four AMPA receptor subunits. We suggest that the predominance of the flop variants contributes to the faster and more extensive desensitization in nonpyramidal neurons, compared to pyramidal cells where flip variants are dominant. Alternative splicing of AMPA receptors may play an important role in regulating synaptic function in a cell-type-specific manner, without changing permeation properties.
Resumo:
The guanine nucleotide binding protein (G protein) cascade underlying phototransduction is one of the best understood of all signaling pathways. The diffusional interactions of the proteins underlying the cascade have been analyzed, both at a macroscopic level and also in terms of the stochastic nature of the molecular contacts. In response to a single activated rhodopsin (R*) formed as a result of a single photon hit, it can be shown that molecules of the G-protein transducin will be activated approximately linearly with time. This, in turn, will cause the number of activated molecules of the effector protein (the phosphodiesterase) also to increase linearly with time. These kinetics of protein activation provide an accurate description of the time course of the rising phase of the photoreceptor's electrical response over a wide range of flash intensities. Recent estimates indicate that at room temperature each R* triggers activation of the phosphodiesterase at a rate of 1000-2000 subunits.s-1. Now that a quantitative description of the activation steps in transduction has been obtained, perhaps the greatest challenge for the future is to provide a comprehensive description of the shutoff reactions, so that a complete account of the photoreceptor's response to light can be achieved.
Resumo:
A fundamental question in the basic biology of aging is whether there is a universal aging process. If indeed such a process exists, one would expect that it develops at a higher rate in short- versus long-lived species. We have quantitated pentosidine, a marker of glycoxidative stress in skin collagen from eight mammalian species as a function of age. A curvilinear increase was modeled for all species, and the rate of increase correlated inversely with maximum life-span. Dietary restriction, a potent intervention associated with increased life-span, markedly inhibited glycoxidation rate in the rodent. On the assumption that collagen turnover rate is primarily influenced by the crosslinking due to glycoxidation, these results suggest that there is a progressive age-related deterioration of the process that controls the collagen glycoxidation rate. Thus, the ability to withstand damage due to glycoxidation and the Maillard reaction may be under genetic control.
Resumo:
We have developed a model of gamma-aminobutyric acid (GABA)ergic synaptic transmission mediated by GABAA and GABAB receptors, including cooperativity in the guanine nucleotide binding protein (G protein) cascade mediating the activation of K+ channels by GABAB receptors. If the binding of several G proteins is needed to activate the K+ channels, then only a prolonged activation of GABAB receptors evoked detectable currents. This could occur if strong stimuli evoked release in adjacent terminals and the spillover resulted in prolonged activation of the receptors, leading to inhibitory responses similar to those observed in hippocampal slices. The same model also reproduced thalamic GABAB responses to high-frequency bursts of stimuli. In this case, prolonged activation of the receptors was due to high-frequency release conditions. This model provides insights into the function of GABAB receptors in normal and epileptic discharges.
Resumo:
In the budding yeast Saccharomyces cerevisiae, the spindle pole body (SPB) serves as the microtubule-organizing center and is the functional analog of the centrosome of higher organisms. By expressing a fusion of a yeast SPB-associated protein to the Aequorea victoria green fluorescent protein, the movement of the SPBs in living yeast cells undergoing mitosis was observed by fluorescence microscopy. The ability to visualize SPBs in vivo has revealed previously unidentified mitotic events. During anaphase, the mitotic spindle has four sequential activities: alignment at the mother-daughter junction, fast elongation, translocation into the bud, and slow elongation. These results indicate that distinct forces act upon the spindle at different times during anaphase.
Resumo:
A simple model of the kinetics of protein folding is presented. The reaction coordinate is the "correctness" of a configuration compared with the native state. The model has a gap in the energy spectrum, a large configurational entropy, a free energy barrier between folded and partially folded states, and a good thermodynamic folding transition. Folding kinetics is described by a master equation. The folding time is estimated by means of a local thermodynamic equilibrium assumption and then is calculated both numerically and analytically by solving the master equation. The folding time has a maximum near the folding transition temperature and can have a minimum at a lower temperature.