980 resultados para Atomic wires
Resumo:
Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 μg g−1. Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography–ultraviolet photo-oxidation–hydride generation atomic–fluorescence spectrometry (HPLC–(UV)–HG–AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 μg g−1, whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 μg g−1). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) (<0.9 μg g−1) and generally high arsenate (As(V)) concentrations (up to 77 μg g−1) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.
Resumo:
The possible deleterious effects of coiling and long time storage of coiled wires on the stress relaxation behaviour of prestressing steel wires has been checked by means of experimental work and a simple analytical model. The results show that if the requirements of Standards are fulfilled (minimum coiling diameters) these effects can be neglected. However, some other factors like previous residual stresses, long time storage or storage at high temperatures, can trigger or emphasize this damage on the material. In the authors? opinion it is recommended to control the final curvature of the wires after uncoiling prior to prestressin, as required in some Standards.
Resumo:
Prestressed structures are susceptible to relaxation losses which are of significant importance in structural design. After being manufactured, prestressing wires are coiled to make their storage and transportation easier. The possible deleterious effects of this operation on the stress relaxation behavior of prestressing steel wires are usually neglected, though it has been noticed by manufacturers and contractors that when relaxation tests are carried out after a long-time storage, on occasions relaxation losses are higher than those measured a short time after manufacturing. The influence of coiling on the relaxation losses is checked by means of experimental work and confirmed with a simple analytical model. The results show that some factors like initial residual stresses, excessively long-time storage or storage at high temperatures, can trigger or accentuate this damage. However, it is also shown that if the requirements of standards are fulfilled (minimum coiling diameters) these effects can be neglected.
Resumo:
The possible deleterious effects of coiling and long-term storage of coiled wires on the stress relaxation behaviour of prestressing steel wires has been checked by means of experimental work and a simple analytical model. The results show that if the requirements of standards are fulfilled (minimum coiling diameters), these effects can be neglected. However, some other factors, such as previous residual stresses, long-term storage or storage at high temperatures, can trigger or emphasize this damage to the material. In the authors' opinion, checking the final curvature of the wires after uncoiling prior to prestressing, as required in some standards, is to be recommended.
Resumo:
The purpose of this paper is to provide information on the behaviour of steel prestressing wires under likely conditions that could be expected during a fire or impact loads. Four loadings were investigated: a) the influence of strain rate – from 10–3 to 600 s–1 – at room temperature, b) the influence of temperature – from 24 to 600 °C – at low strain rate, c) the influence of the joint effect of strain rate and temperature, and d) damage after three plausible fire scenarios. At room temperature it was found that using “static” values is a safe option. At high temperatures our results are in agreement with design codes. Regarding the joint effect of temperature and strain rate, mechanical properties decrease with increasing temperature, although for a given temperature, yield stress and tensile strength increase with strain rate. The data provided can be used profitably to model the mechanical behaviour of steel wires under different scenarios.
Resumo:
The possible deleterious effects of coiling and long-time storage of coiled wires on the stress relaxation behaviour of prestressing steel wires has been checked by means of experimental work and a simple analytical model. The results show that if the requirements of Standards are fulfilled (minimum coiling diameters) these effects can be neglected. However, some other factors like previous residual stresses, long-time storage or storage at high temperatures, can trigger or emphasise this damage to the material. In the authors’ opinion it is recommendable to control the final curvature of the wires after uncoiling prior to prestressing, as required in some Standards.
Resumo:
We present two concurrent semantics (i.e. semantics where concurrency is explicitely represented) for CC programs with atomic tells. One is based on simple partial orders of computation steps, while the other one is based on contextual nets and it is an extensión of a previous one for eventual CC programs. Both such semantics allow us to derive concurrency, dependency, and nondeterminism information for the considered languages. We prove some properties about the relation between the two semantics, and also about the relation between them and the operational semantics. Moreover, we discuss how to use the contextual net semantics in the context of CLP programs. More precisely, by interpreting concurrency as possible parallelism, our semantics can be useful for a safe parallelization of some CLP computation steps. Dually, the dependency information may also be interpreted as necessary sequentialization, thus possibly exploiting it for the task of scheduling CC programs. Moreover, our semantics is also suitable for CC programs with a new kind of atomic tell (called locally atomic tell), which checks for consistency only the constraints it depends on. Such a tell achieves a reasonable trade-off between efficiency and atomicity, since the checked constraints can be stored in a local memory and are thus easily accessible even in a distributed implementation.