948 resultados para Atomic Units
Resumo:
A flow-injection system with a Chelite-S® cationic resin packed minicolumn is proposed for the determination of trace levels of mercury in agroindustrial samples by cold vapor atomic absorption spectrometry. Improved sensitivity and selectivity are attained since mercuric ions are on-line concentrated whereas other potential interferents are discarded. With on-line reductive elution procedure, concentrated hydrochloric acid could be replaced by 10% w/v SnCl2, in 6 M HCl as eluent. The reversed-intermittent stream either carries the atomic mercury, to the flow cell in the forward direction or removes the residue from reactor/gas liquid separator to a discarding flask in the opposite direction. Concentration and volume of reagent, acidity, flow rates, commutation times and potential interfering species were investigated. For 120 s preconcentration time, the proposed system handles about 25 samples h-1 (50.0 500 ng l-1), consuming about 10 ml sample and 5 mg SnCl2 per determination. The detection limit is 0.8 ng l-1 and the relative standard deviation (RSD) (n = 12) of a 76.7 ng l-1 sample is about 5%. Results are in agreement with certified value of standard materials at 95% confidence level and good recoveries (97-128%) of spiked samples were found. (C) 2000 Elsevier Science B.V.
Resumo:
The atomic tunneling between two tunnel-coupled Bose-Einstein condensates (BECs) in a double-well time-dependent trap was studied. For the slowly varying trap, synchronization of oscillations of the trap with oscillations of the relative population was predicted. Using the Melnikov approach, the appearance of the chaotic oscillations in the tunneling phenomena between the condensates was confirmed.
Resumo:
We investigate the possibility that four-fermion contact interactions give rise to the observed deviation from the standard model prediction for the weak charge of cesium, through one-loop contributions. We show that the presence of loops involving the third generation quarks can explain such a deviation.
Resumo:
We present angular basis functions for the Schrödinger equation of two-electron systems in hyperspherical coordinates. By using the hyperspherical adiabatic approach, the wave functions of two-electron systems are expanded in analytical functions, which generalizes the Jacobi polynomials. We show that these functions, obtained by selecting the diagonal terms of the angular equation, allow efficient diagonalization of the Hamiltonian for all values of the hyperspherical radius. The method is applied to the determination of the 1S e energy levels of the Li + and we show that the precision can be improved in a systematic and controllable way. ©2000 The American Physical Society.
Resumo:
We use relativistic mean field theory, which includes scalar and vector mesons, to calculate the binding energy and charge radii in 125Cs - 139Cs. We then evaluate the nuclear structure corrections to the weak charges for a series of cesium isotopes using different parameters and estimate their uncertainty in the framework of this model.
Resumo:
Infrared and photoluminescence spectroscopies have been used to investigate the local environment of the Eu3+ ions in luminescent sol-gel derived materials-di-ureasils-based on a hybrid framework represented by U(600). This host is composed of a siliceous backbone grafted, through urea cross-links, to both ends of polymer segments incorporating 8.5 oxyethylene repeat units. The active centers have been introduced as europium perchlorate, Eu(ClO4)3. Samples with compositions n = 232, 62, 23, 12, and 6 (where n denotes the ratio of (OCH2CH2) moieties per lanthanide ion) have been examined. The combination of the information retrieved from the analysis of characteristic bands of the FTIR spectra-the perchlorate and the Amide I/Amide II features-with that obtained from the photoluminescence data demonstrates that at compositions n = 232 and 62 the anions are free, whereas the Eu3+ ions are complexed by the heteroatoms of the polyether chains. At higher salt concentration, the cations are bonded, not only to the ClO4 - ions, but also to the ether oxygen atoms of the organic segments and to the carbonyl oxygen atoms of the urea linkages. The dual behavior of U(600) with respect to cation coordination has been attributed to the presence in this nanohybrid of strong hydrogen-bonded urea-urea structures, which, at low salt content, cannot be disrupted, thus inhibiting the formation of Eu3+-O=C(urea) contacts and promoting the interaction between the lanthanide ions and the (OCH2CH2) moieties. The present work substantiates the claim that the activation of the coordinating sites of the di-ureasil framework can be tuned by varying either the guest salt concentration at constant chain length or the length of the.organic segments at constant salt concentration. This relevant property opens challenging new prospects in the fields of application of this class of hybrids. © 2001 American Chemical Society.
Resumo:
The scaling dependence of the recombination parameter as a function of the ratio between the energies of the atomic dimer and the most excited trimer states was derived. The scaling function tends to a unversal function in the limit of zero-range interaction or infinite scattering length. This paper reports on how one can obtain the trimer binding energy of a trapped atomic system, from the three-body recombination rate and the corresponding two-body scattering length.
Resumo:
The three-body recombination coefficient of an ultracold atomic system, together with the corresponding two-body scattering length a, allow us to predict the energy E 3 of the shallow trimer bound state, using a universal scaling function. The production of dimers in trapped Bose-Einstein condensates, from three-body recombination processes, in the regime of short magnetic pulses near a Feshbach resonance, is also studied in line with the experimental observation.
Resumo:
In this work it was developed a procedure for the determination of vanadium in urine samples by electrothermal atomic absorption spectrometry using successive injections for preconcentration into a preheated graphite tube. Three 60 μL volumes were sequentially injected into the atomizer preheated to a temperature of 110°C. Drying and pyrolysis steps were carried out after each injection. A chemical modifier, barium difluoride (100 mg L-1), and a surfactant, Triton X-100 (0.3% v v-1), were added to the urine sample. When injecting into a hot graphite tube, the sample flow-rate was 0.5 μL s-1. The limits of detection and quantification were 0.54 and 1.82 without preconcentration, and 0.11 and 0.37 μg L-1 with preconcentration, respectively. The accuracy of the procedure was evaluated by an addition-recovery experiment employing urine samples. Recoveries varied from 96.0 to 103% for additions ranging from 0.8 to 3.5 μg L-1 V. The developed procedure allows the determination of vanadium in urine without any sample pretreatment and with minimal dilution of the sample.
Resumo:
This work shows the potentiality of As as internal standard to compensate errors from sampling of sparkling drinking water samples in the determination of selenium by graphite furnace atomic absorption spectrometry. The mixture Pd(NO 3) 2/Mg(NO 3) 2 was used as chemical modifier. All samples and reference solutions were automatically spiked with 500 μg l -1 As and 0.2% (v/v) HNO 3 by the autosampler, eliminating the need for manual dilutions. For 10 μl dispensed sample into the graphite tube, a good correlation (r=0.9996) was obtained between the ratio of analyte absorbance by the internal standard absorbance and the analyte concentrations. The relative standard deviations (R.S.D.) of measurements varied from 0.05 to 2% and from 1.9 to 5% (n=12) with and without internal standardization, respectively. The limit of detection (LD) based on integrated absorbance was 3.0 μg l -1 Se. Recoveries in the 94-109% range for Se spiked samples were obtained. Internal standardization (IS) improved the repeatability of measurements and increased the lifetime of the graphite tube in ca. 15%. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Polysaccharicles, as alginate and chitosan, have been used to obtain modified release dosage forms. Alginate, due to its property of building gels during the complex formation with calcium ions, allows the building of capsules containing a core constituted by calcium alginate. This work had for objective to determine the appropriate calcium concentration for the preparation of alginate-chitosan capsules, by means of calcium quantification using atomic absorption spectrophotometry. The methodology of calcium quantification was validated through analysis of the limit of detection, precision, accuracy and recovery of the method. The capsules, containing or not the drug, were prepared by the complex coacervation/ionotropic gelification method. Calcium was quantified after samples mineralization and dilution in lantanium solution. The results showed that the amount of calcium incorporated into the capsules depends on the amount of calcium added to the medium, and this ratio increases until the concentration of 1.5% of initial calcium chloride and above this concentration there is a decrease in the proportion of calcium bonded. It was observed that the proportion of calcium that links to the polymer is inversely proportional to the amount of calcium added. The calcium amount incorporated depends on the concentration of the polymeric dispersions used as well as on the ratio between the two polymers.
Resumo:
The interaction between humic substances and poly(o-ethoxyaniline) (POEA), a conducting polymer, was investigated for both solution and self-assembled films. The results have shown that the humic substances induce a doping of POEA by protonation, as indicated by UV-Vis and Raman spectroscopies. The atomic force microscopy (AFM) studies on the self-assembled films have shown that the average roughness of the polymer film has increased after exposing it to humic substances (fulvic and humic acids), consistent with the interaction between POEA and humic substances. However, this change in morphology is reversible by washing the films with water in agreement with the electrical data allowing using this system in sensor applications. Here, the sensor formed by an array of different sensing units was able to detect and distinguish humic substances in aqueous solution, as shown by multivariate analysis (principal component analysis). The motivation to detect humic substance comes due to its importance in terms of quality control of water or soil. ©2005 Sociedade Brasileira de Química.
Resumo:
The purpose of our investigation is to compare the intrapulpal temperature changes following blue LED system and halogen lamp irradiation at the enamel surface of permanent teeth. The fixation of brackets using composite resin is more comfortable and faster when using a photo-curable composite. Several light sources can be used: halogens, arc plasma, lasers, and recently blue LED systems. An important aspect to be observed during such a procedures is the temperature change. In this study, we have used nine human extracted permanent teeth: three central incisors, three lateral incisors, and three canines. Teeth were exposed to two light sources: blue LED system (preliminary commercial model LEC 470-II) and halogen lamp (conventional photo-cure equipment). The surface of teeth was exposed for 20, 40, and 60 sec at the buccal and lingual enamel surface with an angle of 45 degrees. Temperature values measured by a thermistor placed at pulpar chamber were read in time intervals of 1 sec. We obtained plots showing the temperature evolution as a function of time for each experiment. There is a correlation between heating quantity and exposition time of light source: with increasing exposition time, heating increases into the pulpal chamber. The halogen lamp showed higher heating than the LED system, which showed a shorter time of cooling than halogen lamp. The blue LED system seems like the indicated light source for photo-cure of composite resin during the bonding of brackets. The fixation of brackets using composite resin is more comfortable and faster when using a photo-curable composite. Blue LED equipment did not heat during its use. This could permit a shorter clinical time of operation and better performance. © Mary Ann Liebert, Inc.
Resumo:
Objective: To evaluate the use of drugs to relieve the pain of invasive procedures newborn infants cared for at a university hospital NICU. Methods: A prospective cohort study of all newborn infants hospitalized in four NICU during October 2001. The following data were collected: demographic data of the hospitalized newborn infants; clinical morbidity; number of potentially painful procedures and frequency of analgesic administration. Factors associated with the use of analgesia in this cohort of patients were studied by multiple linear regression using SPSS 8.0. Results: Ninety-one newborn infants were admitted to the NICU during the study period (1,025 patient-days). Only 25% of the 1,025 patient-days received systemic analgesia. No specific drugs were administered to relieve acute pain during any of the following painful events: arterial punctures, venous, capillary and lumbar punctures or intubations. For chest tube insertion, 100% of newborn infants received specific analgesia. For the insertion of central catheters 8% of the newborn infants received painkillers. Only nine of the 17 newborn infants that underwent surgical procedures received any analgesic dosage during the postoperative period. For 93% of patients under analgesia the drug of choice was fentanyl. The presence of mechanical ventilation increased the chance of newborn infants receiving painkillers by 6.9 times and the presence of chest tube increased this chance by five times. Conclusion: It is necessary to train health professionals in order to bridge the gap between scientific knowledge regarding newborn infant pain and clinical practice. Copyright © 2005 by Sociedade Brasileira de Pediatria.
Resumo:
The biosynthetic origins of the isoprene units of 4-nerolidylcatechol (1), the major constituent of Potomorphe umbellata, have been studied through feeding experiments with [14C]- and [13C]-glucose, and with precursors of the mevalonic acid and triose/pyruvate pathways, namely, [2- 14C]-mevalonolactone and [U-14C]-glyceraldehyde-3- phosphate, respectively. The pattern of incorporation of label from [1- 13C]-glucose into 1 was determined by quantitative 13C NMR spectroscopy. The labelling pattern revealed that the additive was specifically incorporated, and that the isoprene units of the sesquiterpenoid moiety of 4-nerolidylcatechol were derived from both the mevalonic acid and the triose/pyruvate pathways. The results indicate that both plastidic and cytoplasmic pathways are able to provide isopentenyl diphosphate units for the biosynthesis of 1. ©2005 Sociedade Brasileira de Química.