985 resultados para Asphalt Permeability


Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-speed non-contact laser profilers have become the standard testing equipment for pavement management ride quality testing. The same technology used in the high-speed profilers is now being used in lightweight profilers for construction smoothness testing. The lightweight profilers have many advantages over the California 25-ft profilograph. Despite the many advantages of the lightweight profilers, there is resistance from the contracting industry toward eliminating the 25-ft profilograph for construction ride testing. One way to reduce or overcome the resistance is to evaluate and demonstrate the advantages/disadvantages of the lightweight profiler in actual field use in Iowa. The objective of the study was to purchase a lightweight profiler and to evaluate its suitability for construction smoothness quality verification and quality acceptance on Iowa projects. A lightweight profiler, an Ames Engineering, Inc. LISA single laser unit, was received in February 2003 for the study. Based on the work done during the 2003 construction season, the following conclusions can be made: (1) For hot mix asphalt surfaces, the LISA correlated well with the contractors' profilographs; (2) LISA results are significantly affected by longitudinal tining on portland cement concrete pavements, requiring a laser system upgrade to give accurate results; (3) A significant timesaving was realized by using the LISA; (4) Increasing visibility and reducing time in the construction zone improved safety; (5) One person with limited lifting capabilities could set up and operate the LISA; and (6) With the current Iowa Department of Transportation specification, the LISA cannot totally replace the profilograph, since bridges and short segments with no adjoining pavement would still require a profilograph.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iowa DOT has been using blended cements in ternary mixes since 1999. Use of these supplementary cementitious materials gives concrete with higher strengths and much lower permeability. Use of these materials has been incorporated for use in High Performance Concrete (HPC) decks to achieve lower permeability and thus long term performance. Since we have been using these materials in paving, it would be informative to determine what concrete pavement properties are enhanced as related to high performance concrete. The air void system was excellent at a spacing factor of 0.0047 in (0.120 mm). AVA spacing factor results are much higher than the hardened air void analysis. Although only 3 samples were tested between the image analysis air content and the RapidAir457, there is pretty good agreement between those test methods. Air void analysis indicates that excessive vibration was not required to place the concrete. Vibration was well within the specification limits with an average of 6683 vpm’s with a standard deviation of 461. Overall ride of the project was very good. The average smoothness for the project was 2.1 in/mile (33.8 mm/km). The International Roughness Index (IRI) was 81 in/mi (1.29 m/km). The compressive strength was 6260 psi (43.2 MPa) at 28 days and 6830 (47.1 MPa) at 56 days. The modulus of rupture by third point loading (MOR-TPL) tested at 28 days was 660 psi (4.55 MPa). The AASHTO T277 rapid chloride permeability results at 28 days using the Virginia cure method correlate fairly well with the 56 and 90 day results with standard curing. The Virginia cure method 28 day results were 2475 coulombs and the standard cure 56 and 90 day test results were 2180 and 2118, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of High Performance Concrete (HPC) in Iowa has consisted of achieving slightly higher compressive strengths with an emphasis on reduced permeability. Concrete with reduced permeability has increased durability by slowing moisture and chloride ingress. Achieving reduced permeability has typically been accomplished with combinations of slag and Class C fly ash, or the use of blended cements such as locally available Type IS(20), IS(25) and Type IP(25) in conjunction with Class C fly ash. Fly ash has been used in the majority of concrete placed in Iowa since 1984 and slag has been available in Iowa since 1995. During the economic downturn in 2008, one of the cement plants that produced a Type IS(25) cement was forced to shut down, which reduced the availability of blended cements, typically used on HPC deck overlays. Recently, a source of high reactivity metakaolin has been made available. Metakaolin is produced by heating a pure kaolinite clay to 650 to 700 °C in a rotary kiln (calcining). Metakaolin is a white pozzolan that is used to produce concrete with increased strengths, reduced permeability, reduced efflorescence, and resistance to alkali silica reactivity. The W.R. Grace MK-100 metakaolin will likely be available in dissolvable bags between 25 and 50 pounds. Thus, the mix designs were based on the anticipated bag size range for field use. This research evaluated metakaolin mixes with and without Class C fly ash. Results indicated a seven percent replacement with metakaolin produced concrete with increased strengths and low permeability. When used with Class C fly ash, permeability is reduced to very low rating. Metakaolin may be used to enhance hardened concrete properties for use in high performance concrete (HPC).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An initial feasibility study indicated that the "Purdue Accelerated Polishing Method" gave repeatable results when testing the skid resistance of laboratory specimens. The results also showed a rough correlation with the field performance of the same aggregate sources. The research was then expanded to include all available asphalt aggregates. The results of the expanded study indicated that the method is not presently capable of developing and measuring the full skid potential of the various aggregate sources. Further research in the area of polishing times and/or pressures is needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seven asphaltic concrete resurfacing projects were tested for their frictional properties to determine the age-friction relationship of new paving. Projects studied included Type A asphaltic concrete which is generally used for higher traffic volume roads and Type B asphaltic concrete, a lower type material. Also included in the study were asphaltic concretes containing Type 3 and Type 4 coarse aggregate texture classifications. The classifications are based upon material type and grain size composition. Surfaces both with and without sprinkle treatment aggregates were also included. The data gathered suggests that properly designed and placed dense graded asphaltic concrete mixes are adequate to serve the traveling public at all ages tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sufficient evidence was not discovered in this brief search to alter the general opinion that the Serviceability (Present Serviceability Index-PSI) - Performance Concepts developed by the AASHO Road Test provides the optimum engineering basis for pavement management. Use of these concepts in Iowa has the additional advantage in that we have a reasonable quantity of historical data over a period of time on the change in pavement condition as measured by PSI's. Some additional benefits would be the ability to better assess our needs with respect to those being recommended to Congress by AASHTO Committees. These concepts have been the basis used for developing policies on dimensions and weight of vehicles and highway needs which the AASHTO Transport Committees have recommended to the United States House Committee on Ways and Means. The first recommendation based on these concepts was made in the mid 1960's. Iowa's participation in the evaluation for this recommendation was under the direction of our present Director of Transportation, Mr. Raymond Kassel. PSI Indexes had to be derived from subjective surface ratings at that time. The most recent recommendation to Congress was made in November of 1977. Based on the rationale expressed above, a pilot study of the major part of the rural interstate system was conducted. The Objective of the study was to measure pavement performance through the use of the Present Serviceability Index (PSI) - Pavement Performance concepts as developed by the AASHO Road Test and to explore the usefulness of this type of data as a pavement management tool. Projects in the vicinity of the major urban centers were not included in this study due to the extra time that would be required to isolate accurate traffic data in these areas. Projects consisting of asphalt surface courses on crushed stone base sections were not included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of herbicides in agriculture may lead to environmental problems, such as surface water pollution, with a potential risk for aquatic organisms. The herbicide glyphosate is the most used active ingredient in the world and in Switzerland. In the Lavaux vineyards it is nearly the only molecule applied. This work aimed at studying its fate in soils and its transfer to surface waters, using a multi-scale approach: from molecular (10-9 m) and microscopic scales (10-6 m), to macroscopic (m) and landscape ones (103 m). First of all, an analytical method was developed for the trace level quantification of this widely used herbicide and its main by-product, aminomethylphosphonic acid (AMPA). Due to their polar nature, their derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was done prior to their concentration and purification by solid phase extraction. They were then analyzed by ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The method was tested in different aqueous matrices with spiking tests and validated for the matrix effect correction in relevant environmental samples. Calibration curves established between 10 and 1000ng/l showed r2 values above 0.989, mean recoveries varied between 86 and 133% and limits of detection and quantification of the method were as low as 5 and 10ng/l respectively. At the parcel scale, two parcels of the Lavaux vineyard area, located near the Lutrive River at 6km to the east of Lausanne, were monitored to assess to which extent glyphosate and AMPA were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. Results revealed that the mobility of glyphosate and AMPA in the unsaturated zone was likely driven by the precipitation regime and the soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Elevated glyphosate and AMPA concentrations were measured at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flow in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which for the lateral transport of the herbicide molecules was determined by the slope steepness. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. A mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters. Observations made in the Lutrive River revealed interesting details of glyphosate and AMPA dynamics in urbanized landscapes, such as the Lavaux vineyards. Indeed, besides their physical and chemical properties, herbicide dynamics at the catchment level strongly depend on application rates, precipitation regime, land use and also on the presence of drains or constructed channels. Elevated concentrations, up to 4970 ng/l, observed just after the application, confirmed the diffuse export of these compounds from the vineyard area by surface runoff during main rain events. From April to September 2011, a total load of 7.1 kg was calculated, with 85% coming from vineyards and minor urban sources and 15% from arable crops. Small vineyard surfaces could generate high concentrations of herbicides and contribute considerably to the total load calculated at the outlet, due to their steep slopes (~10%). The extrapolated total amount transferred yearly from the Lavaux vineyards to the Lake of Geneva was of 190kg. At the molecular scale, the possible involvement of dissolved organic matter (DOM) in glyphosate and copper transport was studied using UV/Vis fluorescence spectroscopy. Combined with parallel factor (PARAFAC) analysis, this technique allowed characterizing DOM of soil and surface water samples from the studied vineyard area. Glyphosate concentrations were linked to the fulvic-like spectroscopic signature of DOM in soil water samples, as well as to copper, suggesting the formation of ternary complexes. In surface water samples, its concentrations were also correlated to copper ones, but not in a significant way to the fulvic-like signature. Quenching experiments with standards confirmed field tendencies in the laboratory, with a stronger decrease in fluorescence intensity for fulvic-like fluorophore than for more aromatic ones. Lastly, based on maximum concentrations measured in the river, an environmental risk for these compounds was assessed, using laboratory tests and ecotoxicity data from the literature. In our case and with the methodology applied, the risk towards aquatic species was found negligible (RF<1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iowa D.O.T. specifications do not require 100 percent of 50 blow Marshall density (generally 94%) for field compaction. However, stabilities are determined in the Laboratory on specimens compacted to 100 percent of Marshall density. The purpose of this study is to determine the stabilities of specimens compacted to various densities which are below 100 percent of the 50 blow Marshall density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been observed in the Laboratory that an increase in oven heating time of relatively short duration between mixing and compaction of asphaltic concrete hot mixes can have an effect on the Marshall stability results obtained. The purpose of this short investigation is to determine the effect of oven heating time on the density and stability of hot mixes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 1982 cost of a two-inch asphaltic concrete overlay, with fabric, was an average of 85% of the cost of a three-inch overlay (see attached calculations). A structural number can be assigned to the extra inch of overlay, whereas it is doubtful that any number can be assigned to the fabric. The observations made on the projects in this report leave little reason to be optimistic on the use of fabrics under asphalt overlays. This is especially true of the Floyd, Dallas and Clarke county projects. A great amount of fabric is being used nationwide for this purpose, probably more from sales promotion than from actual documented performance. Full scale field testing is continuing each time a project is let utilizing fabric reinforcement under asphaltic concrete overlays. It has already become apparent that the use of fabrics in AC overlays is not always cost effective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All noncomplying penetration and absolute viscosity results must be verified before being reported. This verification of test results is done by reheating and retesting the identical sample that is suspect. The District Laboratories are required to submit penetration and absolute viscosity correlation samples to the Central Laboratory. These samples are the identical ones tested by the District Laboratories. When the Central laboratory tests these correlation samples they are also considered to be reheated and retested. Reheating a sample will harden the asphalt to some degree and possibly cause a change in the test results. This investigation was conducted to determine how much change in penetration and absolute viscosity could be expected by reheating and retesting asphalt samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dr. Gilbert Y. Baladi of Michigan State University has developed a new device intended for reliable determination of asphalt concrete mechanical properties such as Poisson's ratio, resilient modulus, and indirect tensile strength. The device is the result of an effort to improve upon procedures and equipment currently available for evaluation of mechanical properties. A duplicate of this device was fabricated in the Iowa Department of Transportation, Materials Lab Machine Shop in 1989. This report details the results of an evaluation of the effectiveness of the device in testing Marshall specimens for indirect tensile strength as compared to results obtained with standard equipment described in AASHTO T-283. Conclusions of the report are: l. Results obtained with the Baladi device average 6 to 8 percent higher than those obtained with the standard device. 2. The standard device exhibited a slightly greater degree of precision than did the Baladi device. 3. The Baladi device is easier and quicker to use than the standard apparatus. 4. It may be possible to estimate indirect tensile strength from the stability/flow ratio by dividing by factors of 1.8 and 1.5 for 50 blow and 75 blow mixes respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1990, early distress had shown up on US 20 in Hamilton/Webster counties, three years after paving. Since that time, over a dozen more projects, constructed between 1984 and 1994, have been found to exhibit similar early distress. Several changes to the concrete and Portland cement specifications occurred in 1994 and 1996. This study was undertaken to investigate in place concrete pavements before and after specification changes were implemented. The objective of this research is to evaluate the impact of Portland cement and concrete specification changes made in 1994 and 1996 on PCC durability. Cores were obtained in 1998 and 2003 from projects constructed in 1992, before specification changes, and 1997 after specification changes. The following is a brief summary of the conclusions: 1. The pavements in the study constructed under the new specifications are performing much better after 5 years of service than the pavements constructed under the old specifications. 2. According to ISU, micro-cracking is evident in all concrete that has been in service, due to thermal stresses and loading stresses. Also, the low vacuum SEM will desiccate the concrete enough to cause micro-cracking. The SEM should not be used as a tool to indicate micro-cracking. 3. Use of Type II cement (C3A <8%) and a 3.0% SO3 limit does not completely eliminate ettringite infilling in air voids, as indicated in the bottom of the 1997 cores. 4. In areas of high moisture (bottom of the core), infilling is present in most of the 1997 cores. 5. Low air content and high spacing factor in the top of 1992 cores apparently causes F/T cycling cracking and then increased moisture paths from cracking causes infilling. 6. Use of ground granulated blast furnace slag (GGBFS) and fly ash reduces ettringite infilling either by diluting the aluminate (C3A) or lowering permeability, which slows ingress of moisture. 7. The specification changes that made the biggest impact on pavement durability are the limits on vibration and increase in air content in September 1994. 8. Investigations of cores from pavements placed in 2002 and 2003 indicate improved air contents and spacing factors. In-place air content and spacing factors should be monitored to determine if appropriate air void parameters are being met.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iowa Department of Transportation (Iowa DOT) UTW Project (HR-559) initiated Ultra-Thin Whitetopping in Iowa. The project is located on Iowa Highway 21 between Iowa Highway 212 and U.S. Highway 6 in Iowa County, near Belle Plaine, Iowa. The above listed research project lasted for five years, and then was extended for another five year period. The new phase of the project (TR 432) was initiated by removing cracked panels existing in the 2-inch thick PCC sections and replacing them with three inches of PCC. The project extension provides an increased understanding of slab bonding conditions over a longer period, as well as knowledge regarding the behavior of the newly rehabilitated areas. This report documents the rehabilitation of the PCC patching of all fractured panels and several cracked panels, taking place in September of 2001.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of Railroad Flatcars (RRFCs) as the superstructure on low-volume county bridges has been investigated in a research project conducted by the Bridge Engineering Center at Iowa State University. These bridges enable county engineers to replace old, inadequate county bridge superstructures for less than half the cost and in a shorter construction time than required for a conventional bridge. To illustrate their constructability, adequacy, and economy, two RRFC demonstration bridges were designed, constructed, and tested: one in Buchanan County and the other in Winnebago County. The Buchanan County Bridge was constructed as a single span with 56-ft-long flatcars supported at their ends by new, concrete abutments. The use of concrete in the substructure allowed for an integral abutment at one end of the bridge with an expansion joint at the other end. Reinforced concrete beams (serving as longitudinal connections between the three adjacent flatcars) were installed to distribute live loads among the RRFCs. Guardrails and an asphalt milling driving surface completed the bridge. The Winnebago County Bridge was constructed using 89-ft-long flatcars. Preliminary calculations determined that they were not adequate to span 89 ft as a simple span. Therefore, the flatcars were supported by new, steel-capped piers and abutments at the RRFCs' bolsters and ends, resulting in a 66-ft main span and two 10-ft end spans. Due to the RRFC geometry, the longitudinal connections between adjacent RRFCs were inadequate to support significant loads; therefore, transverse, recycled timber planks were utilized to effectively distribute live loads to all three RRFCs. A gravel driving surface was placed on top of the timber planks, and a guardrail system was installed to complete the bridge. Bridge behavior predicted by grillage models for each bridge was validated by strain and deflection data from field tests; it was found that the engineered RRFC bridges have live load stresses significantly below the AASHTO Bridge Design Specification limits. To assist in future RRFC bridge projects, RRFC selection criteria were established for visual inspection and selection of structurally adequate RRFCs. In addition, design recommendations have been developed to simplify live load distribution calculations for the design of the bridges. Based on the results of this research, it has been determined that through proper RRFC selection, construction, and engineering, RRFC bridges are a viable, economic replacement system for low-volume road bridges.