944 resultados para Arsenic Carcinogenesis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melanoma is the most aggressive form of skin cancer, and its incidence has increased dramatically over the years. The murine B16F10 melanoma in syngeneic C57Bl/6 mice has been used as a highly aggressive model to investigate tumor development. Presently, we demonstrate in the B16F10-Nex2 subclone that silencing of SOCS-1, a negative regulator of Jak/Stat pathway, leads to reversal of the tumorigenic phenotype and inhibition of melanoma cell metastasis. SOCS-1 silencing with short hairpin RNA affected tumor growth and cell cycle regulation with arrest at the S phase with large-sized nuclei, reduced cell motility, and decreased melanoma cell invasion through Matrigel. A clonogenic assay showed that SOCS-1 acted as a modulator of resistance to anoikis. In addition, down-regulation of SOCS-1 decreased the expression of epidermal growth factor receptor ( mainly the phosphorylated-R), Ins-R alpha, and fibroblast growth factor receptor. In vivo, silencing of SOCS-1 inhibited subcutaneous tumor growth and metastatic development in the lungs. Because SOCS-1 is expressed in most melanoma cell lines and bears a relation with tumor invasion, thickness, and stage of disease, the present results on the effects of SOCS-1 silencing in melanoma suggest that this regulating protein can be a target of cancer therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultraviolet (UV) light generates two major DNA lesions: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs), but the specific participation of these two lesions in the deleterious effects of UV is a longstanding question. In order to discriminate the precise role of unrepaired CPDs and 6-4PPs in UV-induced responses triggering cell death, human fibroblasts were transduced by recombinant adenoviruses carrying the CPD-photolyase or 6-4PP-photolyase cDNAs. Both photolyases were able to prevent UV-induced apoptosis in cells deficient for nucleotide excision repair (NER) to a similar extent, while in NER-proficient cells UV-induced apoptosis was prevented only by CPD-photolyase, with no effects observed when 6-4PPs were removed by the specific photolyase. These results strongly suggest that both CPDs and 6-4PPs contribute to UV-induced apoptosis in NER-deficient cells, while in NER-proficient cells, CPDs are the only lesions responsible for UV-killing, probably due to the rapid repair of 6-4PPs by NER. As a consequence, the difference in skin photosensitivity, including carcinogenesis, of most of the xeroderma pigmentosum patients and of normal people is probably not only a quantitative aspect, but depends on the type of DNA damage induced by sunlight and its rate of repair. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mice selected for a strong (AIRmax) or weak (AIRmin) acute inflammatory response present different susceptibilities to bacterial infections, autoimmune diseases and carcinogenesis. Variations in these phenotypes have been also detected in AIRmax and AIRmin mice rendered homozygous for Slc11a1 resistant (R) and susceptible (S) alleles. Our aim was to investigate if the phenotypic differences observed in these mice was related to the complement system. AIRmax and AIRmin mice and AIRmax and AIRmin groups homozygous for the resistance (R) or susceptibility (S) alleles of the solute carrier family 11a1 member (Slc11a1) gene, formerly designated Nramp-1. While no difference in complement activity was detected in sera from AIRmax and AIRmin strains, all sera from AIRmax Slc11a1 resistant mice (AIRmax(RR)) presented no complement-dependent hemolytic activity. Furthermore, C5 was not found in their sera by immunodiffusion and, polymerase chain reaction and DNA sequencing of its gene demonstrated that AIRmax(RR) mice are homozygous for the C5 deficient (D) mutation previously described in A/J. Therefore, the C5D allele was fixed in homozygosis in AIRmax(RR) line. The AIRmax(RR) line is a new experimental mouse model in which a strong inflammatory response can be triggered in vivo in the absence of C5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we develop a flexible cure rate survival model by assuming the number of competing causes of the event of interest to follow a compound weighted Poisson distribution. This model is more flexible in terms of dispersion than the promotion time cure model. Moreover, it gives an interesting and realistic interpretation of the biological mechanism of the occurrence of event of interest as it includes a destructive process of the initial risk factors in a competitive scenario. In other words, what is recorded is only from the undamaged portion of the original number of risk factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: High-risk human papillomavirus (HPV) is the main etiologic factor for cervical cancer. The severity of HPV-associated cervical lesions has been correlated to the number of infiltrating macrophages. The objective of this work is to characterize the role of tumor-associated macrophages (TAM) on the immune cellular response against the tumor. Experimental Design: We used the HPV16 E6- and E7-expressing TC-1 mouse tumor model to study the effect of TAM on T-cell function in vitro, and depleted TAM, using clodronate-containing liposomes, to characterize its role in vivo. Results: TAM, characterized by the positive expression of CD45, F4/80, and CD11b, formed the major population of infiltrating tumor cells. TAM displayed high basal Arginase I activity, producing interleukin-10 (IL-10); they were resistant to iNOSll activity induction, therefore reversion to M1 phenotype, when stimulated in vitro with lipopolysaccharide/IFN gamma, indicating an M2 phentoype. In cultures of isolated TAM, TAM induced regulatory phenotype, characterized by IL-10 and Foxp3 expression, and inhibited proliferation of CD8 lymphocytes. In vivo, depletion of TAM inhibited tumor growth and stimulated the infiltration of tumors by HPV16 E7(49-57)-specific CD8 lymphocytes, whereas depletion of Gr1(+) tumor-associated cells had no effect. Conclusions: M2-like macrophages infiltrate HPV16-associated tumors causing suppression of antitumor T-cell response, thus facilitating tumor growth. Depletion or phenotype alteration of this population should be considered in immunotherapy strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetaldehyde is an environmentally widespread genotoxic aldehyde present in tobacco smoke, vehicle exhaust and several food products. Endogenously, acetaldehyde is produced by the metabolic oxidation of ethanol by hepatic NAD-dependent alcohol dehydrogenase and during threonine catabolism. The formation of DNA adducts has been regarded as a critical factor in the mechanisms of acetaldehyde mutagenicity and carcinogenesis. Acetaldehyde reacts with 2`-deoxyguanosine in DNA to form primarily N(2)-ethylidene-2`-deoxyguanosine. The subsequent reaction of N(2)-ethylidenedGuo with another molecule of acetaldehyde gives rise to 1,N(2)-propano-2`-deoxyguanosine (1,N(2)-propanodGuo), an adduct also found as a product of the crotonaldehyde reaction with dGuo. However, adducts resulting from the reaction of more than one molecule of acetaldehyde in vivo are still controversial. In this study, the unequivocal formation of 1,N(2)-propanodGuo by acetaldehyde was assessed in human cells via treatment with [(13)C(2)]-acetaldehyde. Detection of labeled 1,N(2)-propanodGuo was performed by HPLC/MS/MS. Upon acetaldehyde exposure (703 mu M), increased levels of both 1,N(2)-etheno-2`-deoxyguanosine (1,N(2)-epsilon dGuo), which is produced from alpha,beta-unsaturated aldehydes formed during the lipid peroxidation process, and 1,N(2)-propanodGuo were observed. The unequivocal formation of 1,N(2)-propanodGuo in cells exposed to this aldehyde can be used to elucidate the mechanisms associated with acetaldehyde exposure and cancer risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The clear cell subtype of renal cell carcinoma (RCC) is the most lethal and prevalent cancer of the urinary system. To investigate the molecular changes associated with malignant transformation in clear cell RCC, the gene expression profiles of matched samples of tumor and adjacent non-neoplastic tissue were obtained from six patients. A custom-built cDNA microarray platform was used, comprising 2292 probes that map to exons of genes and 822 probes for noncoding RNAs mapping to intronic regions. Intronic transcription was detected in all normal and neoplastic renal tissues. A subset of 55 transcripts was significantly down-regulated in clear cell RCC relative to the matched nontumor tissue as determined by a combination of two statistical tests and leave-one-out patient cross-validation. Among the down-regulated transcripts, 49 mapped to untranslated or coding exons and 6 were intronic relative to known exons of protein-coding genes. Lower levels of expression of SIN3B, TRIP3, SYNJ2BP and NDE1 (P<0.02), and of intronic transcripts derived from SND1 and ACTN4 loci (P<0.05), were confirmed in clear cell RCC by Real-time RT-PCR. A subset of 25 transcripts was deregulated in additional six nonclear cell RCC samples, pointing to common transcriptional alterations in RCC irrespective of the histological subtype or differentiation state of the tumor. Our results indicate a novel set of tumor suppressor gene candidates, including noncoding intronic RNAs, which may play a significant role in malignant transformations of normal renal cells. (C) 2008 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative damage to DNA is thought to play a role in carcinogenesis by causing Mutations, and indeed accumulation of oxidized DNA bases has been observed in samples obtained from tumors but not from surrounding tissue within the same patient. Base excision repair (BER) is the main pathway for the repair of oxidized modifications both in nuclear and mitochondrial, DNA. In order to ascertain whether diminished BER capacity might account for increased levels of oxidative DNA damage in cancer cells, the activities of BER enzymes in three different lung cancer cell lines and their non-cancerous counterparts were measured using oligonucleotide substrates with single DNA lesions to assess specific BER enzymes. The activities of four BER enzymes, OGG1, NTH1, UDG and APE1, were compared in mitochondrial and nuclear extracts. For each specific lesion, the repair activities were similar among the three cell lines used. However, the specific activities and cancer versus control comparison differed significantly between the nuclear and mitochondrial compartments. OGG1 activity, as measured by 8-oxodA incision, was upregulated in cancer cell mitochondria but down-regulated in the nucleus when compared to control cells. Similarly, NTH1 activity was also up-regulated in mitochondrial extracts from cancer cells but did not change significantly in the nucleus. Together, these results support the idea that alterations in BER capacity are associated with carcinogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structure and spectroscopic properties of a manifold of states of a new molecular species, BeAs, have been investigated theoretically at the complete active space self-consistent field/multireference single and double excitations configuration interaction (CASSCF/MRSDCI) approach, using the aug-cc-pV5Z-PP basis set for arsenic, which includes a relativistic effective core potential, and the cc-pV5Z set for beryllium. Potential energy curves of five quartet and eight doublet (I > + S) states correlating with the five lowest-lying dissociation limit are constructed. The effect of spin-orbit coupling is also included in the description of the ground state, and of the doublet states correlating with the second dissociation channel. Dipole moment functions and vibrationally averaged dipole moments are also evaluated. The similarities and differences between BeAs, BeP, and BeN are analyzed. Spin-orbit effects are small for the ground state close to the equilibrium distance, but avoided crossings between Omega = 1/2 states, and between Omega = 3/2 states changes significantly the I > + S curves for the lowest-lying doublets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We previously demonstrated that Bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl) pyridine-N, N`] copper(II) [Cu(isaepy)(2)] was an efficient inducer of the apoptotic mitochondrial pathway. Here, we deeply dissect the mechanisms underlying the ability of Cu(isaepy)(2) to cause mitochondriotoxicity. In particular, we demonstrate that Cu(isaepy)(2) increases NADH-dependent oxygen consumption of isolated mitochondria and that this phenomenon is associated with oxy-radical production and insensitive to adenosine diphosphate. These data indicate that Cu(isaepy)(2) behaves as an uncoupler and this property is also confirmed in cell systems. Particularly, SH-SY5Y cells show: (i) an early loss of mitochondrial transmembrane potential; (ii) a decrease in the expression levels of respiratory complex components and (iii) a significant adenosine triphosphate (ATP) decrement. The causative energetic impairment mediated by Cu(isaepy)(2) in apoptosis is confirmed by experiments carried out with rho(0) cells, or by glucose supplementation, where cell death is significantly inhibited. Moreover, gastric and cervix carcinoma AGS and HeLa cells, which rely most of their ATP production on oxidative phosphorylation, show a marked sensitivity toward Cu(isaepy)(2). Adenosine monophosphate-activated protein kinase (AMPK), which is activated by events increasing the adenosine monophosphate: ATP ratio, is deeply involved in the apoptotic process because the overexpression of its dominant/negative form completely abolishes cell death. Upon glucose supplementation, AMPK is not activated, confirming its role as fuel-sensing enzyme that positively responds to Cu(isaepy)(2)-mediated energetic impairment by committing cells to apoptosis. Overall, data obtained indicate that Cu(isaepy)(2) behaves as delocalized lipophilic cation and induces mitochondrial-sited reactive oxygen species production. This event results in mitochondrial dysfunction and ATP decrease, which in turn triggers AMPK-dependent apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute expression of E7 oncogene from human papillomavirus (HPV) 16 or HPV18 is sufficient to overcome tumor necrosis factor (TNF)-alpha cytostatic effect on primary human keratinocytes. In the present study, we investigated the molecular basis of E7-induced TNF resistance through a comparative analysis of the effect of this cytokine on the proliferation and global gene expression of normal and E7-expressing keratinocytes. Using E7 functional mutants, we show that E7-induced TNF resistance correlates with its ability to mediate pRb degradation and cell transformation. On the other hand, this effect does not depend on E7 sequences required to override DNA damage-induced cell cycle arrest or extend keratinocyte life span. Furthermore, we identified a group of 66 genes whose expression pattern differs between normal and E7-expressing cells upon cytokine treatment. These genes are mainly involved in cell cycle regulation suggesting that their altered expression may contribute to sustained cell proliferation even in the presence of a cytostatic stimulus. Differential expression of TCN1 (transcobalamin I), IFI44 (Interferon-induced protein 44), HMGB2 (high-mobility group box 2) and FUS [Fusion (involved in t(12; 16) in malignant liposarcoma)] among other genes were further confirmed by western-blot and/or real-time polymerase chain reaction. Moreover, FUS upregulation was detected in HPV-positive cervical high-grade squamous intraepithelial lesions when compared with normal cervical tissue. Further evaluation of the role of such genes in TNF resistance and HPVassociated disease development is warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the evaluation of several parameters for the preparation of a tuna fish candidate as a reference material (RM) in order to measure the total As mass fraction by slurry sampling graphite furnace atomic absorption spectrometry (SLS-GF AAS) and slurry sampling hydride generation atomic absorption spectrometry (SLS-HG AAS). The main parameters investigated were the homogeneity, analyte segregation and composition during material production. For candidate RM preparation, tuna fish was collected at a local market, cleaned, freeze-dried and treated using different procedures as follows: (1) ground in a cutting mill and separated in different particle sizes (2) ground in cryogenic mill. The mass fraction of As in the cryogenically ground sample was (4.77 +/- A 0.19) mu g g(-1) for SLS-GF AAS and (4.61 +/- A 0.34) mu g g(-1) for SLS-HG AAS. The accuracy of the procedures was checked with tuna fish certified reference material (BCR 627) with recoveries of 102 and 94% for SLS-GF AAS and SLS-HG AAS, respectively. The homogeneity factor was calculated for different pretreatment procedures and for particle sizes in the range of 500-150 mu g, indicating good homogeneity, except for raw fish. There was no observed analyte segregation and no losses, no contamination and no changes in the microdistribution of material during preparation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In industrial polymer and synthetic rubber production facilities, workers are exposed to 1,3-butadiene. This compound is converted in vivo to 1,2,3,4-diepoxybutane (DEB) and has been linked to increased incidences of cancer in these individuals. Carcinogenesis has been attributed to formation of DEB induced DNA interstrand cross-links. Previous studies have demonstrated that DEB cross-links deoxyguanosine residues within 5'-GNC sequences in synthetic DNA, in restriction fragments, and in defined sequence nucleosomes. The current study utilized the polymerase chain reaction (PCR) to examine DEB damage frequencies within nuclear genes, found within "open" regions of chromatin, as compared to regions of unexpressed sequence that reside in tightly packed, "closed" chromatin, to more closely model DEB reactivity in vivo. These initial studies have been performed in chicken liver homogenates. Preliminarily, we have found a dose-dependent DEB lesion-forming response within "open" chromatin. DEB appears to have little-to-no effect upon regions of "closed" chromatin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diepoxybutane (DEB), a known industrial carcinogen, reacts with DNA primarily at the N7 position of deoxyguanosine residues and creates interstrand cross-links at the sequence 5'-GNC. Since N7-N7 cross-links cause DNA to fragment upon heating, quantative polymerase chain reaction (QPCR) is being used in this experiment to measure the amount of DEB damage (lesion frequency) with three different targets-mitochondrial (unpackaged), open chromatin region, and closed chromatin region. Initial measurements of DEB damage within these three targets were not consistent because the template DNA was not the limiting reagent in the PCR. Follow-up PCR trials using a limiting amount of DNA are still in progress although initial experimentation looks promising. Sequencing of these three targets to confirm the primer targets has only been successfully performed for the closed chromatin target and does not match the sequence from NIH used to design that primer pair. Further sequencing trials need to be conducted on all three targets to assure that a mitochondrial, open chromatin, and closed chromatin region are actually being amplified in this experimental series.