954 resultados para Aquatic fungi


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lake Okeechobee, Florida, located in the middle of the larger Kissimmee River-Lake Okeechobee-Everglades ecosystem in South Florida, serves a variety of ecosystem and water management functions including fish and wildlife habitat, flood control, water supply, and source water for environmental restoration. As a result, the ecological status of Lake Okeechobee plays a significant role in defining the overall success of the greater Everglades ecosystem restoration initiative. One of the major ecological indicators of Lake Okeechobee condition focuses on the near-shore and littoral zone regions as characterized by the distribution and abundance of submerged aquatic vegetation (SAV) and giant bulrush (Scirpus californicus(C.A. Mey.) Steud.). The objective of this study is to present a stoplight restoration report card communication system, common to all 11 indicators noted in this special journal issue, as a means to convey the status of SAV and bulrush in Lake Okeechobee. The report card could be used by managers, policy makers, scientists and the public to effectively evaluate and distill information about the ecological status in South Florida. Our assessment of the areal distribution of SAV in Lake Okeechobee is based on a combination of empirical SAV monitoring and output from a SAV habitat suitability model. Bulrush status in the lake is related to a suitability index linked to adult survival and seedling establishment metrics. Overall, presentation of these performance metrics in a stoplight format enables an evaluation of how the status of two major components of Lake Okeechobee relates to the South Florida restoration program, and how the status of the lake influences restoration efforts in South Florida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence that certain microbially-derived compounds may account for part of the aquatic dissolved organic nitrogen (DON) pool. Enantiomeric ratios of amino acids were used to assess the microbial input to the DON pool in the Florida Everglades, USA. Elevated levels of d-alanine, d-aspartic acid, d-glutamic acid and d-serine indicated the presence of peptidoglycan in the samples. The estimated peptidoglycan contribution to amino acid nitrogen ranged from 2.8 ± 0.1% to 6.4 ± 0.9%, increasing with salinity from freshwater to coastal waters. The distribution of individual d-amino acids in the samples suggests additional inputs to DON, possibly from archaea or from abiotic racemization of l-amino acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissolved organic nitrogen (DON) represents the least understood part of the nitrogen cycle. Due to recent methodological developments, proteins now represent a potentially characterisable fraction of DON at the macromolecular level. We have applied polyacrylamide gel electrophoresis to characterise proteins in samples from a range of aquatic environments in the Everglades National Park, Florida, USA. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed that each sample has a complex and characteristic protein distribution. Some proteins appeared to be common to more than one site, and these might derive from dominant higher plant vegetation. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) provided better resolution; however, strong background hindered interpretation. Our results suggest that the two techniques can be used in parallel as a tool for protein characterisation: SDS-PAGE to provide a sample-specific fingerprint and 2D-PAGE to focus on the characterisation of individual protein molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using high-resolution measures of aquatic ecosystem metabolism and water quality, we investigated the importance of hydrological inputs of phosphorus (P) on ecosystem dynamics in the oligotrophic, P-limited coastal Everglades. Due to low nutrient status and relatively large inputs of terrestrial organic matter, we hypothesized that the ponds in this region would be strongly net heterotrophic and that pond gross primary production (GPP) and respiration (R) would be the greatest during the “dry,” euhaline estuarine season that coincides with increased P availability. Results indicated that metabolism rates were consistently associated with elevated upstream total phosphorus and salinity concentrations. Pulses in aquatic metabolism rates were coupled to the timing of P supply from groundwater upwelling as well as a potential suite of hydrobiogeochemical interactions. We provide evidence that freshwater discharge has observable impacts on aquatic ecosystem function in the oligotrophic estuaries of the Florida Everglades by controlling the availability of P to the ecosystem. Future water management decisions in South Florida must include the impact of changes in water delivery on downstream estuaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the fate of mangrove leaf tannins in aquatic ecosystems and their possible influence on dissolved organic nitrogen (DON) cycling. Tannins were extracted and purified from senescent yellow leaves of the red mangrove (Rhizophora mangle) and used for a series of model experiments to investigate their physical and chemical reactivity in natural environments. Physical processes investigated included aggregation, adsorption to organic matter-rich sediments, and co-aggregation with DON in natural waters. Chemical reactions included structural change, which was determined by excitation–emission matrix fluorescence spectra, and the release of proteins from tannin–protein complexes under solar-simulated light exposure. A large portion of tannins can be physically eliminated from aquatic environments by precipitation in saline water and also by binding to sediments. A portion of DON in natural water can coprecipitate with tannins, indicating that mangrove swamps can influence DON cycling in estuarine environments. The chemical reactivity of tannins in natural waters was also very high, with a half-life of less than 1 d. Proteins were released gradually from tannin–protein complexes incubated under light conditions but not under dark conditions, indicating a potentially buffering role of tannin– protein complexes on DON recycling in mangrove estuaries. Although tannins are not detected at a significant level in natural waters, they play an important ecological role by preserving nitrogen and buffering its cycling in estuarine ecosystems through the prevention of rapid DON export/loss from mangrove fringe areas and/or from rapid microbial mineralization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed the effect of periodic drying in the Florida Everglades on spatiotemporal population genetic structure of eastern mosquitofish (Gambusia holbrooki). Severe periodic drying events force individuals from disparate sources to mix in dry season relatively deep-water refuges. In 1996 (a wet year) and 1999 (a dry year), we sampled mosquitofish at 20 dry-season refuges distributed in 3 water management regions and characterized genetic variation for 10 allozyme and 3 microsatellite loci. In 1996, most of the ecosystem did not dry, whereas in 1999, many of our sampling locations were isolated by expanses of dried marsh surface. In 1996, most spatial genetic variation was attributed to heterogeneity within regions. In 1999, spatial genetic variation within regions was not significant. In both years, a small but significant amount of variation (less than 1% of the total variation) was partitioned among regions. Variance was consistently greater than zero among long-hydroperiod sites within a region, but not among short-hydroperiod sites within a region, where hydroperiod was measured as time since last marsh surface dry-down forcing fishes into local refuges. In 1996, all sites were in Hardy–Weinberg equilibrium. In 1999, we observed fewer heterozygotes than expected for most loci and sites suggesting a Wahlund effect arising from fish leaving areas that dried and mixing in deep-water refuges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study shows that light exposure of flocculent material (floc) from the Florida Coastal Everglades (FCE) results in significant dissolved organic matter (DOM) generation through photo-dissolution processes. Floc was collected at two sites along the Shark River Slough (SRS) and irradiated with artificial sunlight. The DOM generated was characterized using elemental analysis and excitation emission matrix fluorescence coupled with parallel factor analysis. To investigate the seasonal variations of DOM photo-generation from floc, this experiment was performed in typical dry (April) and wet (October) seasons for the FCE. Our results show that the dissolved organic carbon (DOC) for samples incubated under dark conditions displayed a relatively small increase, suggesting that microbial processes and/or leaching might be minor processes in comparison to photo-dissolution for the generation of DOM from floc. On the other hand, DOC increased substantially (as much as 259 mgC gC−1) for samples exposed to artificial sunlight, indicating the release of DOM through photo-induced alterations of floc. The fluorescence intensity of both humic-like and protein-like components also increased with light exposure. Terrestrial humic-like components were found to be the main contributors (up to 70%) to the chromophoric DOM (CDOM) pool, while protein-like components comprised a relatively small percentage (up to 16%) of the total CDOM. Simultaneously to the generation of DOC, both total dissolved nitrogen and soluble reactive phosphorus also increased substantially during the photo-incubation period. Thus, the photo-dissolution of floc can be an important source of DOM to the FCE environment, with the potential to influence nutrient dynamics in this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major goal of the Comprehensive Everglades Restoration Plan (CERP) is to recover historical (pre-drainage) wading bird rookeries and reverse marked decreases in wading bird nesting success in Everglades National Park. To assess efforts to restore wading birds, a trophic hypothesis was developed that proposes seasonal concentrations of small-fish and crustaceans (i.e., wading bird prey) were a key factor to historical wading bird success. Drainage of the Everglades has diminished these seasonal concentrations, leading to a decline in wading bird nesting and displacing them from their historical nesting locations. The trophic hypothesis predicts that restoring historical hydrological patterns to pre-drainage conditions will recover the timing and location of seasonally concentrated prey, ultimately restoring wading bird nesting and foraging to the southern Everglades. We identified a set of indicators using small-fish and crustaceans that can be predicted from hydrological targets and used to assess management success in regaining suitable wading bird foraging habitat. Small-fish and crustaceans are key components of the Everglades food web and are sensitive to hydrological management, track hydrological history with little time lag, and can be studied at the landscape scale. The seasonal hydrological variation of the Everglades that creates prey concentrations presents a challenge to interpreting monitoring data. To account for the variable hydrology of the Everglades in our assessment, we developed dynamic hydrological targets that respond to changes in prevailing regional rainfall. We also derived statistical relationships between density and hydrological drivers for species representing four different life-history responses to drought. Finally, we use these statistical relationships and hydrological targets to set restoration targets for prey density. We also describe a report-card methodology to communicate the results of model-based assessments for communication to a broad audience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron oxides and arsenic are prevalent in the environment. With the increase interest in the use of iron oxide nanoparticles (IONPs) for contaminant remediation and the high toxicity of arsenic, it is crucial that we evaluate the interactions between IONPs and arsenic. The goal was to understand the environmental behavior of IONPs in regards to their particle size, aggregation and stability, and to determine how this behavior influences IONPs-arsenic interactions. ^ A variety of dispersion techniques were investigated to disperse bare commercial IONPs. Vortex was able to disperse commercial hematite nanoparticles into unstable dispersions with particles in the micrometer size range while probe ultrasonication dispersed the particles into stable dispersions of nanometer size ranges for a prolonged period of time. Using probe ultrasonication and vortex to prepare IONPs suspensions of different particle sizes, the adsorption of arsenite and arsenate to bare hematite nanoparticles and hematite aggregates were investigated. To understand the difference in the adsorptive behavior, adsorption kinetics and isotherm parameters were determined. Both arsenite and arsenate were capable of adsorbing to hematite nanoparticles and hematite aggregates but the rate and capacity of adsorption is dependent upon the hematite particle size, the stability of the dispersion and the type of sorbed arsenic species. Once arsenic was adsorbed onto the hematite surface, both iron and arsenic can undergo redox transformation both microbially and photochemically and these processes can be intertwined. Arsenic speciation studies in the presence of hematite particles were performed and the effect of light on the redox process was preliminary quantified. The redox behavior of arsenite and arsenate were different depending on the hematite particle size, the stability of the suspension and the presence of environmental factors such as microbes and light. The results from this study are important and have significant environmental implications as arsenic mobility and bioavailability can be affected by its adsorption to hematite particles and by its surface mediated redox transformation. Moreover, this study furthers our understanding on how the particle size influences the interactions between IONPs and arsenic thereby clarifying the role of IONPs in the biogeochemical cycling of arsenic.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An awareness of mercury (Hg) contamination in various aquatic environments around the world has increased over the past decade, mostly due to its ability to concentrate in the biota. Because the presence and distribution of Hg in aquatic systems depend on many factors (e.g., pe, pH, salinity, temperature, organic and inorganic ligands, sorbents, etc.), it is crucial to understand its fate and transport in the presence of complexing constituents and natural sorbents, under those different factors. An improved understanding of the subject will support the selection of monitoring, remediation, and restoration technologies. The coupling of equilibrium chemical reactions with transport processes in the model PHREEQC offers an advantage in simulating and predicting the fate and transport of aqueous chemical species of interest. Thus, a great variety of reactive transport problems could be addressed in aquatic systems with boundary conditions of specific interest. Nevertheless, PHREEQC lacks a comprehensive thermodynamic database for Hg. Therefore, in order to use PHREEQC to address the fate and transport of Hg in aquatic environments, it is necessary to expand its thermodynamic database, confirm it and then evaluate it in applications where potential exists for its calibration and continued validation. The objectives of this study were twofold: 1) to develop, expand, and confirm the Hg database of the hydrogeochemical PHREEQC to enhance its capability to simulate the fate of Hg species in the presence of complexing constituents and natural sorbents under different conditions of pH, redox, salinity and temperature; and 2) to apply and evaluate the new database in flow and transport scenarios, at two field test beds: Oak Ridge Reservation, Oak Ridge, TN and Everglades National Park, FL, where Hg is present and is of much concern. Overall, this research enhanced the capability of the PHREEQC model to simulate the coupling of the Hg reactions in transport conditions. It also demonstrated its usefulness when applied to field situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the development and improvement of techniques for molecular studies and their subsequent application to the systematic, significant changes occurred in the classification of gasteroid fungi. The genus Morganella belongs to the family Lycoperdaceae, and is characterized mainly by lignicolous habit and presence of paracapilicium. Recent data demonstrate the discovery of new species for the group and the existence of a wide variety of species occurring in tropical ecosystems. However, the phylogenetic relationships of the genus, as well as the taxonomic classification, still require revisions to be better understood, the literature studies that address this issue are still very scarce. Thus, the objective of this study was to conduct studies of molecular phylogeny with species of the genus Morganella, to enhance understanding of the phylogeny of the group by including tropical species data. For this, the specimens used both for DNA extractions as for morphological review were obtained from Brazilian and foreign herbaria. For morphological analysis were observed characters relevant to the group's taxonomy. For phylogenetic analysis the Maximum Parsimony and Bayesian Analyzes were used, using the internal transcribed spacer (ITS) of nuclear ribosomal DNA. In phylogenetic analyzes, representatives from Morganella form a monophyletic clade with good support value and based on these results the genus should not be included as subgenus of Lycoperdon. The analysis indicated that M. pyriformis was not grouped with other representatives of Morganella, and therefore should not be included in the group as representative of Apioperdon subgenus because it is a Lycoperdon representative. Moreover, M. fuliginea, M. nuda, M. albostipitata, M. velutina, M. subincarnata are grouped with high support values within the genus Morganella. Morganella arenicola based on morphological and molecular studies does not aggregate in Morganella. Morganella nuda was grouped with M. fuliginea giving indications that can be treated as an intraspecific variation. The results of the analyzes favor to a better understanding of the species of Morganella. However, additional studies using a greater number of species, as well as other molecular markers are needed for a better understanding of the phylogenetic of Morganella.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TG and CF are funded by FEDER funds through the Operational Programme Competitiveness Factors e COMPETE and national funds by FCT e Foundation for Science and Technology under the strategic project UID/NEU/04539/2013. C.F. is a recipient of a postdoctoral fellowship from FCT-Fundac¸ ~ao para a Ci^encia e Tecnologia (SFRH/BPD/63733/2009). NG is funded by The Wellcome Trust (080088, 086827, 075470, 099215 & 097377), the FungiBrain Marie Curie Network and the Medical Research Council (UK).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trehalose is a non-reducing disaccharide essential for pathogenic fungal survival and virulence. The biosynthesis of trehalose requires the trehalose-6-phosphate synthase, Tps1, and trehalose-6-phosphate phosphatase, Tps2. More importantly, the trehalose biosynthetic pathway is absent in mammals, conferring this pathway as an ideal target for antifungal drug design. However, lack of germane biochemical and structural information hinders antifungal drug design against these targets.

In this dissertation, macromolecular X-ray crystallography and biochemical assays were employed to understand the structures and functions of proteins involved in the trehalose biosynthetic pathway. I report here the first eukaryotic Tps1 structures from Candida albicans (C. albicans) and Aspergillus fumigatus (A. fumigatus) with substrates or substrate analogs. These structures reveal the key residues involved in substrate binding and catalysis. Subsequent enzymatic assays and cellular assays highlight the significance of these key Tps1 residues in enzyme function and fungal stress response. The Tps1 structure captured in its transition-state with a non-hydrolysable inhibitor demonstrates that Tps1 adopts an “internal return like” mechanism for catalysis. Furthermore, disruption of the trehalose biosynthetic complex formation through abolishing Tps1 dimerization reveals that complex formation has regulatory function in addition to trehalose production, providing additional targets for antifungal drug intervention.

I also present here the structure of the Tps2 N-terminal domain (Tps2NTD) from C. albicans, which may be involved in the proper formation of the trehalose biosynthetic complex. Deletion of the Tps2NTD results in a temperature sensitive phenotype. Further, I describe in this dissertation the structures of the Tps2 phosphatase domain (Tps2PD) from C. albicans, A. fumigatus and Cryptococcus neoformans (C. neoformans) in multiple conformational states. The structures of the C. albicans Tps2PD -BeF3-trehalose complex and C. neoformans Tps2PD(D24N)-T6P complex reveal extensive interactions between both glucose moieties of the trehalose involving all eight hydroxyl groups and multiple residues of both the cap and core domains of Tps2PD. These structures also reveal that steric hindrance is a key underlying factor for the exquisite substrate specificity of Tps2PD. In addition, the structures of Tps2PD in the open conformation provide direct visualization of the conformational changes of this domain that are effected by substrate binding and product release.

Last, I present the structure of the C. albicans trehalose synthase regulatory protein (Tps3) pseudo-phosphatase domain (Tps3PPD) structure. Tps3PPD adopts a haloacid dehydrogenase superfamily (HADSF) phosphatase fold with a core Rossmann-fold domain and a α/β fold cap domain. Despite lack of phosphatase activity, the cleft between the Tps3PPD core domain and cap domain presents a binding pocket for a yet uncharacterized ligand. Identification of this ligand could reveal the cellular function of Tps3 and any interconnection of the trehalose biosynthetic pathway with other cellular metabolic pathways.

Combined, these structures together with significant biochemical analyses advance our understanding of the proteins responsible for trehalose biosynthesis. These structures are ready to be exploited to rationally design or optimize inhibitors of the trehalose biosynthetic pathway enzymes. Hence, the work described in this thesis has laid the groundwork for the design of Tps1 and Tps2 specific inhibitors, which ultimately could lead to novel therapeutics to treat fungal infections.