940 resultados para Aortic aneurysm, abdominal
Resumo:
In many diseases, tissue hypoxia occurs in conjunction with other inflammatory processes. Since previous studies have demonstrated a role for leukocytes in ischemia/reperfusion injury, we hypothesized that endothelial hypoxia may "superinduce" expression of an important leukocyte adhesion molecule, E-selectin (ELAM-1, CD62E). Bovine aortic endothelial monolayers were exposed to hypoxia in the presence or absence of tumor-necrosis factor alpha (TNF-alpha) or lipopolysaccharide (LPS). Cell surface E-selectin was quantitated by whole cell ELISA or by immunoprecipitation using polyclonal anti-E-selectin sera. Endothelial mRNA levels were assessed using ribonuclease protection assays. Hypoxia alone did not induce endothelial E-selectin expression. However, enhanced induction of E-selectin was observed with the combination of hypoxia and TNF-alpha (270% increase over normoxia and TNF-alpha) or hypoxia and LPS (190% increase over normoxia and LPS). These studies revealed that a mechanism for such enhancement may be hypoxia-elicited decrements in endothelial intracellular levels of cAMP (<50% compared with normoxia). Addition of forskolin and isobutyl-methyl-xanthine during hypoxia resulted in reversal of cAMP decreases and a loss of enhanced E-selectin surface expression with the combination of TNF-alpha and hypoxia. We conclude that endothelial hypoxia may provide a novel signal for superinduction of E-selectin during states of inflammation.
Resumo:
Incubating rat aortic smooth muscle cells with either platelet-derived growth factor BB (PDGF) or insulin-like growth factor I (IGF-I) increased the phosphorylation of PHAS-I, an inhibitor of the mRNA cap binding protein, eukaryotic initiation factor (eIF) 4E. Phosphorylation of PHAS-I promoted dissociation of the PHAS-I-eIF-4E complex, an effect that could partly explain the stimulation of protein synthesis by the two growth factors. Increasing cAMP with forskolin decreased PHAS-I phosphorylation and markedly increased the amount of eIF-4E bound to PHAS-I, effects consistent with an action of cAMP to inhibit protein synthesis. Both PDGF and IGF-I activated p70S6K, but only PDGF increased mitogen-activated protein kinase activity. Forskolin decreased by 50% the effect of PDGF on increasing p70S6K, and forskolin abolished the effect of IGF-I on the kinase. The effects of PDGF and IGF-I on increasing PHAS-I phosphorylation, on dissociating the PHAS-I-eIF-4E complex, and on increasing p70S6K were abolished by rapamycin. The results indicate that IGF-I and PDGF increase PHAS-I phosphorylation in smooth muscle cells by the same rapamycin-sensitive pathway that leads to activation of p70S6K.
Resumo:
Vesicles containing endothelin 1 (ET-1) were isolated from bovine aortic endothelial cells (BAECs) by fractionation of homogenates on sucrose density gradients by ultracentrifugation. The vesicles were localized at the 1.0/1.2 M sucrose interface using a specific anti-ET-1-(16-21) RIA. Identification of ET-1 and big ET-1 in this fraction was confirmed by HPLC analysis combined with RIA. Morphological examination of the ET-1-enriched fraction by electron microscopy identified clusters of vesicles approximately 100 nm in diameter. Immunostaining of ultrathin cryosections prepared from the vesicle fraction for ET-1 or big ET-1 showed clusters of 15-nm gold particles attached to or within vesicles. Immunofluorescence staining of whole BAECs using a specific ET-1-(16-21) IgG purified by affinity chromatography revealed punctate granulation of the cell cytoplasm viewed under light microscopy. This distinct pattern of staining was shown by confocal light microscopy to be intracellular. Immunofluorescence staining of whole cells with a polyclonal antiserum for big ET-1-(22-39) showed a defined perinuclear localization of precursor molecule. Hence, several different approaches have demonstrated that ET-1 and big ET-1 are localized within intracellular vesicles in BAECs, suggesting that these subcellular compartments are an important site for processing of big ET-1 by endothelin-converting enzyme.
Resumo:
OBJECTIVE Type A aortic dissection is a life-threatening disease requiring immediate surgical treatment. With emerging catheter-based technologies, endovascular stent-graft implantation to treat aneurysms and dissections has become a standardized procedure. However, endovascular treatment of the ascending aorta remains challenging. Thus we designed an ascending aortic dissection model to allow simulation of endovascular treatment. METHODS Five formalin-fixed human aortas were prepared. The ascending aorta was opened semicircularly in the middle portion and the medial layer was separated from the intima. The intimal tube was readapted using running monofilament sutures. The preparations were assessed by 128-slice computed tomography. A bare-metal stent was implanted for thoracic endovascular aortic repair in 4 of the aortic dissection models. RESULTS Separation of the intimal and medial layer of the aorta was considered to be sufficient because computed tomography showed a clear image of the dissection membrane in each aorta. The dissection was located 3.9 ± 1.4 cm proximally from the aortic annulus, with a length of 4.6 ± 0.9 cm. Before stent implantation, the mean distance from the intimal flap to the aortic wall was measured as 0.63 ± 0.163 cm in the ascending aorta. After stent implantation, this distance decreased to 0.26 ± 0.12 cm. CONCLUSION This model of aortic dissection of the ascending human aorta was reproducible with a comparable pathological and morphological appearance. The technique and model can be used to evaluate new stent-graft technologies to treat type A dissection and facilitate training for surgeons.
Resumo:
OBJECTIVE Sutureless aortic valve replacement (AVR) offers an alternative to standard AVR in aortic stenosis. This prospective, single-arm study aimed to demonstrate safety and effectiveness of a bovine pericardial sutureless aortic valve at 1 year. METHODS From February 2010 to September 2013, 658 patients (mean age 78.3 ± 5.6 years; 40.0% octogenarian; 64.4% female; mean Society of Thoracic Surgeons score 7.2 ± 7.4) underwent sutureless AVR in 25 European centers. Concomitant cardiac procedures were performed in 29.5% and minimally invasive cardiac surgery in 33.3%. RESULTS One-year site-reported event rates were 8.1% for all-cause mortality, 4.5% for cardiac mortality, 3.0% for stroke, 1.9% for valve-related reoperation, 1.4% for endocarditis, and 0.6% for major paravalvular leak. No valve thrombosis, migration, or structural valve deterioration occurred. New York Heart Association class improved at least 1 level in 77.5% and remained stable (70.4% New York Heart Association class I or II at 1 year). Mean effective orifice area was 1.5 ± 0.4 cm(2); pressure gradient was 9.2 ± 5.0 mm Hg. Left ventricular mass decreased from 138.5 g/m(2) before surgery to 115.3 g/m(2) at 1 year (P < .001). Echocardiographic core laboratory findings confirmed that paravalvular leak was rare and remained stable during follow-up. CONCLUSIONS The Perceval sutureless valve resulted in low 1-year event rates in intermediate-risk patients undergoing AVR. New York Heart Association class improved in more than three-quarters of patients and remained stable. These data support the safety and efficacy to 1 year of the Perceval sutureless valve in this intermediate-risk population.