975 resultados para Antarctic Ocean


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of a di-unsaturated highly branched isoprenoid (HBI) lipid biomarker (diene II) in Southern Ocean sediments has previously been proposed as a proxy measure of palaeo Antarctic sea ice. Here we show that a source of diene II is the sympagic diatom Berkeleya adeliensis Medlin. Furthermore, the propensity for B. adeliensis to flourish in platelet ice is reflected by an offshore downward gradient in diene II concentration in >100 surface sediments from Antarctic coastal and near-coastal environments. Since platelet ice formation is strongly associated with super-cooled freshwater inflow, we further hypothesize that sedimentary diene II provides a potentially sensitive proxy indicator of landfast sea ice influenced by meltwater discharge from nearby glaciers and ice shelves, and re-examination of some previous diene II downcore records supports this hypothesis. The term IPSO25-Ice Proxy for the Southern Ocean with 25 carbon atoms-is proposed as a proxy name for diene II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Ongoing ocean warming and acidification increasingly affect marine ecosystems, in particular around the Antarctic Peninsula. Yet little is known about the capability of Antarctic notothenioid fish to cope with rising temperature in acidifying seawater. While the whole animal level is expected to be more sensitive towards hypercapnia and temperature, the basis of thermal tolerance is set at the cellular level, with a putative key role for mitochondria. This study therefore investigates the physiological responses of the Antarctic Notothenia rossii after long-term acclimation to increased temperatures (7°C) and elevated PCO2 (0.2 kPa CO2) at different levels of physiological organisation. Results For an integrated picture, we analysed the acclimation capacities of N. rossii by measuring routine metabolic rate (RMR), mitochondrial capacities (state III respiration) as well as intra- and extracellular acid-base status during acute thermal challenges and after long-term acclimation to changing temperature and hypercapnia. RMR was partially compensated during warm- acclimation (decreased below the rate observed after acute warming), while elevated PCO2 had no effect on cold or warm acclimated RMR. Mitochondrial state III respiration was unaffected by temperature acclimation but depressed in cold and warm hypercapnia-acclimated fish. In both cold- and warm-exposed N. rossii, hypercapnia acclimation resulted in a shift of extracellular pH (pHe) towards more alkaline values. A similar overcompensation was visible in muscle intracellular pH (pHi). pHi in liver displayed a slight acidosis after warm normo- or hypercapnia acclimation, nevertheless, long-term exposure to higher PCO2 was compensated for by intracellular bicarbonate accumulation. Conclusion The partial warm compensation in whole animal metabolic rate indicates beginning limitations in tissue oxygen supply after warm-acclimation of N. rossii. Compensatory mechanisms of the reduced mitochondrial capacities under chronic hypercapnia may include a new metabolic equilibrium to meet the elevated energy demand for acid-base regulation. New set points of acid-base regulation under hypercapnia, visible at the systemic and intracellular level, indicate that N. rossii can at least in part acclimate to ocean warming and acidification. It remains open whether the reduced capacities of mitochondrial energy metabolism are adaptive or would impair population fitness over longer timescales under chronically elevated temperature and PCO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the fact that ocean acidification is considered to be especially pronounced in the Southern Ocean, little is known about CO2-dependent physiological processes and the interactions of Antarctic phytoplankton key species. We therefore studied the effects of CO2 partial pressure (PCO2) (16.2, 39.5, and 101.3 Pa) on growth and photosynthetic carbon acquisition in the bloom-forming species Chaetoceros debilis, Pseudo-nitzschia subcurvata, Fragilariopsis kerguelensis, and Phaeocystis antarctica. Using membrane-inlet mass spectrometry, photosynthetic O2 evolution and inorganic carbon (Ci) fluxes were determined as a function of CO2 concentration. Only the growth of C. debilis was enhanced under high PCO2. Analysis of the carbon concentrating mechanism (CCM) revealed the operation of very efficient CCMs (i.e., high Ci affinities) in all species, but there were species-specific differences in CO2-dependent regulation of individual CCM components (i.e., CO2 and uptake kinetics, carbonic anhydrase activities). Gross CO2 uptake rates appear to increase with the cell surface area to volume ratios. Species competition experiments with C. debilis and P. subcurvata under different PCO2 levels confirmed the CO2-stimulated growth of C. debilis observed in monospecific incubations, also in the presence of P. subcurvata. Independent of PCO2, high initial cell abundances of P. subcurvata led to reduced growth rates of C. debilis. For a better understanding of future changes in phytoplankton communities, CO2-sensitive physiological processes need to be identified, but also species interactions must be taken into account because their interplay determines the success of a species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution of dissolved zinc (Zn) was investigated in the Atlantic sector of the Southern Ocean in the austral autumn of 2008 as part of the IPY GEOTRACES expedition ZERO & DRAKE. Research focused on transects across the major frontal systems along the Zero Meridian and across the Drake Passage. There was a strong gradient in surface zinc concentrations observed across the Antarctic Polar Front along both transects and high zinc levels were found in surface waters throughout the Southern Ocean. Vertical profiles for dissolved Zinc showed the presence of local minima and maxima in the upper 200 m consistent with significant uptake by phytoplankton and release by zooplankton grazing, respectively. Highest deep water zinc concentrations were found in the centre of the Weddell Gyre associated with Central Intermediate Water (CIW), a water mass which is depleted in O2, elevated in CO2 and is regionally a CFC minimum. Our data suggests that the remineralization of sinking particles is a key control on the distribution of Zn in the Southern Ocean. Disappearance ratios of zinc to phosphate (Zn:P) in the upper water column increased southwards along both transects and based on laboratory studies they suggest slower growth rates of phytoplankton due to iron or light limitation. Zinc and silicate were strongly correlated throughout the study region but the disappearance ratio (Zn:Si) was relatively uniform overall except for the region close to the ice edge on the Zero Meridian.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the quantitative study of diatoms and radiolarians, summer sea-surface temperature (SSST) and sea ice distribution were estimated from 122 sediment core localities in the Atlantic, Indian and Pacific sectors of the Southern Ocean to reconstruct the last glacial environment at the EPILOG (19.5-16.0 ka or 23 000-19 000 cal yr. B.P.) time-slice. The statistical methods applied include the Imbrie and Kipp Method, the Modern Analog Technique and the General Additive Model. Summer SSTs reveal greater surface-water cooling than reconstructed by CLIMAP (Geol. Soc. Am. Map Chart. Ser. MC-36 (1981) 1), reaching a maximum (4-5 °C) in the present Subantarctic Zone of the Atlantic and Indian sector. The reconstruction of maximum winter sea ice (WSI) extent is in accordance with CLIMAP, showing an expansion of the WSI field by around 100% compared to the present. Although only limited information is available, the data clearly show that CLIMAP strongly overestimated the glacial summer sea ice extent. As a result of the northward expansion of Antarctic cold waters by 5-10° in latitude and a relatively small displacement of the Subtropical Front, thermal gradients were steepened during the last glacial in the northern zone of the Southern Ocean. Such reconstruction may, however, be inapposite for the Pacific sector. The few data available indicate reduced cooling in the southern Pacific and give suggestion for a non-uniform cooling of the glacial Southern Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigations of piston cores from the Vema Channel and lower flanks of the Rio Grande Rise suggest the presence of episodic flow of deep and bottom water during the Late Pleistocene. Cores from below the present-day foraminiferal lysocline (at ~4000 m) contain an incomplete depositional record consisting of Mn nodules and encrustations, hemipelagic clay, displaced high-latitude diatoms, and poorly preserved heterogeneous microfossil assemblages. Cores from the depth range between 2900 m and 4000 m contain an essentially complete Late Pleistocene record, and consist of well-defined carbonate dissolution cycles with periodicities of ~100,000 years. Low carbonate content and increased dissolution correspond to glacial episodes, as interpreted by oxygen isotopic analysis of bulk foraminiferal assemblages. The absence of diagnostic high-latitude indicators (Antarctic diatoms) within the dissolution cyclss, however, suggests that AABW may not have extended to significantly shallower elevations on the lower flanks of the Rio Grande Rise during the Late Pleistocene. Therefore episodic AABW flow may not necessarily be the mechanism responsible for producing these cyclic events. This interpretation is also supported by the presence of an apparently complete Brunhes depositional record in the same cores, suggesting current velocities insufficient for significant erosion. Fluctuations in the properties and flow characteristics of another water mass, such as NADW, may be involved. The geologic evidence in core-top samples near the present-day AABW/NADW transition zone is consistent with either of two possible interpretations of the upper limit of AABW on the east flank of the channel. The foraminiferal lysocline, at ~4000 m, is near the top of the benthic thermocline and nepheloid layer, and may therefore correspond to the upper limit of relatively corrosive AABW. On the other hand, the carbonate compensation depth (CDD) at ~4250 m, which corresponds to the maximum gradient in the benthic thermocline, is characterized by rapid deposition of relatively fine-grained sediment. Such a zone of convergence and preferential sediment accumulation would be expected near the level of no motion in the AABW/NADW transition zone as a consequence of Ekman-layer veering of the mean velocity vector in the bottom boundary layer. It is possible that both of these interpretations are in part correct. The "level of no motion'' may in fact correspond to the CCD, while at the same time relatively corrosive water of Antarctic origin may mix with overlying NADW and therefore elevate the foraminifera] lysocline to depths above the level of no motion. Closely spaced observations of the hydrography and flow characteristics within the benthic thermocline will be required in order to use sediment parameters as more precise indicators of paleo-circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the quantitative analysis of diatom assemblages preserved in 274 surface sediment samples recovered in the Pacific, Atlantic and western Indian sectors of the Southern Ocean we have defined a new reference database for quantitative estimation of late-middle Pleistocene Antarctic sea ice fields using the transfer function technique. The Detrended Canonical Analysis (DCA) of the diatom data set points to a unimodal distribution of the diatom assemblages. Canonical Correspondence Analysis (CCA) indicates that winter sea ice (WSI) but also summer sea surface temperature (SSST) represent the most prominent environmental variables that control the spatial species distribution. To test the applicability of transfer functions for sea ice reconstruction in terms of concentration and occurrence probability we applied four different methods, the Imbrie and Kipp Method (IKM), the Modern Analog Technique (MAT), Weighted Averaging (WA), and Weighted Averaging Partial Least Squares (WAPLS), using logarithm-transformed diatom data and satellite-derived (1981-2010) sea ice data as a reference. The best performance for IKM results was obtained using a subset of 172 samples with 28 diatom taxa/taxa groups, quadratic regression and a three-factor model (IKM-D172/28/3q) resulting in root mean square errors of prediction (RMSEP) of 7.27% and 11.4% for WSI and summer sea ice (SSI) concentration, respectively. MAT estimates were calculated with different numbers of analogs (4, 6) using a 274-sample/28-taxa reference data set (MAT-D274/28/4an, -6an) resulting in RMSEP's ranging from 5.52% (4an) to 5.91% (6an) for WSI as well as 8.93% (4an) to 9.05% (6an) for SSI. WA and WAPLS performed less well with the D274 data set, compared to MAT, achieving WSI concentration RMSEP's of 9.91% with WA and 11.29% with WAPLS, recommending the use of IKM and MAT. The application of IKM and MAT to surface sediment data revealed strong relations to the satellite-derived winter and summer sea ice field. Sea ice reconstructions performed on an Atlantic- and a Pacific Southern Ocean sediment core, both documenting sea ice variability over the past 150,000 years (MIS 1 - MIS 6), resulted in similar glacial/interglacial trends of IKM and MAT-based sea-ice estimates. On the average, however, IKM estimates display smaller WSI and slightly higher SSI concentration and probability at lower variability in comparison with MAT. This pattern is a result of different estimation techniques with integration of WSI and SSI signals in one single factor assemblage by applying IKM and selecting specific single samples, thus keeping close to the original diatom database and included variability, by MAT. In contrast to the estimation of WSI, reconstructions of past SSI variability remains weaker. Combined with diatom-based estimates, the abundance and flux pattern of biogenic opal represents an additional indication for the WSI and SSI extent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antarctic krill (Euphausia superba), a key species of Southern Ocean food webs plays a central role in ecosystem processes, community dynamics of apex predators and as a commercial fishery target. A decline in krill abundance during the late 20th century in the SW Atlantic sector has been linked to a concomitant decrease in sea ice, based on the hypothesis that sea ice acts as a feeding ground for overwintering larvae. However, evidence supporting this hypothesis has been scarce due to logistical challenges of collecting data in austral winter. Here we report on a winter study that involved diver observations of larval krill in their under-ice environment, ship-based studies of krill, sea ice physical characteristics, and biophysical model analyses of krill-ocean-ice interactions. We present evidence that complex under-ice topography is vital for larval krill in terms of dispersal and advection into high productive nursery habitats, rather than the provision by the ice environment of food. Further, ongoing changes in sea ice will lead to increases in sea-ice regimes favourable for overwintering larval krill but shifting southwards. This will result in ice-free conditions in the SW Atlantic, which will be conducive for enhancing food supplies due to sufficient light and iron availability, thus enhancing larvae development and growth. However, the associated impact on dispersal and advection may lead to a net shift in krill from the SW Atlantic to regions further east by the eastward flowing ACC and the northern branch of the Weddell Gyre, with profound consequences for the Southern Ocean pelagic ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Antarctic Pack Ice Seal (APIS) Program was initiated in 1994 to estimate the abundance of four species of Antarctic phocids: the crabeater seal Lobodon carcinophaga, Weddell seal Leptonychotes weddellii, Ross seal Ommatophoca rossii and leopard seal Hydrurga leptonyx and to identify ecological relationships and habitat use patterns. The Atlantic sector of the Southern Ocean (the eastern sector of the Weddell Sea) was surveyed by research teams from Germany, Norway and South Africa using a range of aerial methods over five austral summers between 1996-1997 and 2000-2001. We used these observations to model densities of seals in the area, taking into account haul-out probabilities, survey-specific sighting probabilities and covariates derived from satellite-based ice concentrations and bathymetry. These models predicted the total abundance over the area bounded by the surveys (30°W and 10°E). In this sector of the coast, we estimated seal abundances of: 514 (95 % CI 337-886) x 10**3 crabeater seals, 60.0 (43.2-94.4) x 10**3 Weddell seals and 13.2 (5.50-39.7) x 10**3 leopard seals. The crabeater seal densities, approximately 14,000 seals per degree longitude, are similar to estimates obtained by surveys in the Pacific and Indian sectors by other APIS researchers. Very few Ross seals were observed (24 total), leading to a conservative estimate of 830 (119-2894) individuals over the study area. These results provide an important baseline against which to compare future changes in seal distribution and abundance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine ecosystems of the Southern Ocean are particularly vulnerable to ocean acidification. Antarctic krill (Euphausia superba; hereafter krill) is the key pelagic species of the region and its largest fishery resource. There is therefore concern about the combined effects of climate change, ocean acidification and an expanding fishery on krill and ultimately, their dependent predators-whales, seals and penguins. However, little is known about the sensitivity of krill to ocean acidification. Juvenile and adult krill are already exposed to variable seawater carbonate chemistry because they occupy a range of habitats and migrate both vertically and horizontally on a daily and seasonal basis. Moreover, krill eggs sink from the surface to hatch at 700-1,000 m, where the carbon dioxide partial pressure (pCO2) in sea water is already greater than it is in the atmosphere. Krill eggs sink passively and so cannot avoid these conditions. Here we describe the sensitivity of krill egg hatch rates to increased CO2, and present a circumpolar risk map of krill hatching success under projected pCO2 levels. We find that important krill habitats of the Weddell Sea and the Haakon VII Sea to the east are likely to become high-risk areas for krill recruitment within a century. Furthermore, unless CO2 emissions are mitigated, the Southern Ocean krill population could collapse by 2300 with dire consequences for the entire ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the investigation of organic carbon fluxes reaching the seafloor, oxygen microprofiles were measured at 145 sites in different sub-regions of the Southern Ocean. At eleven sites, an in situ oxygen microprofiler was deployed for the measurement of oxygen profiles and the calculation of organic carbon fluxes. At four sites, both in situ and ex situ data were determined for high latitudes. Based on this dataset as well as on previous published data, a relationship was established for the estimation of fluxes derived by ex situ measured O2 profiles. The fluxes of labile organic matter range from 0.5 to 37.1 mgC m**2/day. The high values determined by in situ measurements were observed in the Polar Front region (water depth of more than 4290 m) and are comparable to organic matter fluxes observed for high-productivity, upwelling areas like off West Africa. The oxygen penetration depth, which reflects the long-term organic matter flux to the sediment, was correlated with assemblages of key diatom species. In the Scotia Sea (~3000 m water depth), oxygen penetration depths of less than 15 cm were observed, indicating high benthic organic carbon fluxes. In contrast, the oxic zone extends down to several decimeters in abyssal sediments of the Weddell Sea and the southeastern South Atlantic. The regional pattern of organic carbon fluxes derived from micro-sensor data suggest that episodic and seasonal sedimentation pulses are important for the carbon supply to the seafloor of the deep Southern Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acknowledgements The authors thank the crews, fishers, and scientists who conducted the various surveys from which data were obtained. This work was supported by the Government of South Georgia and South Sandwich Islands. Additional logistical support provided by The South Atlantic Environmental Research Institute, with thanks to Paul Brickle. PF receives funding from the MASTS pooling initiative (TheMarine Alliance for Science and Technology for Scotland), and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. SF is funded by the Natural Environment Research Council, and data were provided from the British Antarctic Survey Ecosystems Long-term Monitoring and Surveys programme as part of the BAS Polar Science for Planet Earth Programme. The authors also thank the anonymous referees for their helpful suggestions on an earlier version of this manuscript.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification, as a result of increased atmospheric CO2, has the potential to adversely affect the larval stages of many marine organisms and hence have profound effects on marine ecosystems. This is the first study of its kind to investigate the effects of ocean acidification on the early life-history stages of three echinoderms species, two asteroids and one irregular echinoid. Potential latitudinal variations on the effects of ocean acidification were also investigated by selecting a polar species (Odontaster validus), a temperate species (Patiriella regularis), and a tropical species (Arachnoides placenta). The effects of reduced seawater pH levels on the fertilization of gametes, larval survival and morphometrics on the aforementioned species were evaluated under experimental conditions. The pH levels considered for this research include ambient seawater (pH 8.1 or pH 8.2), levels predicted for 2100 (pH 7.7 and pH 7.6) and the extreme pH of 7.0, adjusted by bubbling CO2 gas into filtered seawater. Fertilization for Odontaster validus and Patiriella regularis for the predicted scenarios for 2100 was robust, whereas fertilization was significantly reduced in Arachnoides placenta. Larval survival was robust for the three species at pH 7.8, but numbers declined when pH dropped below 7.6. Normal A. placenta larvae developed in pH 7.8, whereas smaller larvae were observed for O. validus and P. regularis under the same pH treatment. Seawater pH levels below 7.6 resulted in smaller and underdeveloped larvae for all three species. The greatest effects were expected for the Antarctic asteroid O. validus but overall the tropical sand dollar A. placenta was the most affected by the reduction in seawater pH. The effects of ocean acidification on the asteroids O. validus and P. regulars, and the sand dollar A. placenta are species-specific. Several parameters, such as taxonomic differences, physiology, genetic makeup and the population's evolutionary history may have contributed to this variability. This study highlights the vulnerability of the early developmental stages and the complexity of ocean acidification. However, future research is needed to understand the effects at individual, community and ecosystem levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present four melt climatology estimates based on a simulation of Antarctic iceberg drift and melting that includes small, medium-sized, and giant tabular icebergs with a realistic size distribution. Drift and meltdown is simulated using vertical profiles of ocean currents, temperature, and salinity, which goes beyond the present standard in iceberg modeling. The climatology estimates based on simulations of small (SMA), 'small-to-medium'-sized (MED12 & MED123), and small-to-giant icebergs (ALL) exhibit differential characteristics: successive inclusion of larger icebergs leads to a reduced seasonality of iceberg melt and a shift of the mass input to the area north of 58°S, while less melt water is released into the coastal areas. This highlights the necessity to account for larger and giant icebergs in order to obtain accurate melt climatologies. The four monthly melt climatologies [mm/day] are available as netCDF files with 1°x1° spatial resolution and can be used, e.g., for sensitivity studies with uncoupled sea ice-ocean models, or as spatio-temporal templates for the redistribution of land ice from the Antarctic ice sheet over the Southern Ocean in climate models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paleotopographic models of the West Antarctic margin, which are essential for robust simulations of paleoclimate scenarios, lack information on sediment thickness and geodynamic conditions, resulting in large uncertainties. A new total sediment thickness grid spanning the Ross Sea-Amundsen Sea-Bellingshausen Sea basins is presented and is based on all the available seismic reflection, borehole, and gravity modeling data offshore West Antarctica. This grid was combined with NGDC's global 5 arc minute grid of ocean sediment thickness (Whittaker et al., 2013, doi:10.1002/ggge.20181) and extends the NGDC grid further to the south. Sediment thickness along the West Antarctic margin tends to be 3-4 km larger than previously assumed. The sediment volume in the Bellingshausen, Amundsen, and Ross Sea basins amounts to 3.61, 3.58, and 2.78 million km³, respectively. The residual basement topography of the South Pacific has been revised and the new data show an asymmetric trend over the Pacific-Antarctic Ridge. Values are anomalously high south of the spreading ridge and in the Ross Sea area, where the topography seems to be affected by persistent mantle processes. In contrast, the basement topography offshore Marie Byrd Land cannot be attributed to dynamic topography, but rather to crustal thickening due to intraplate volcanism. Present-day dynamic topography models disagree with the presented revised basement topography of the South Pacific, rendering paleotopographic reconstructions with such a limited dataset still fairly uncertain.