973 resultados para Anomalous Symmetries


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anomalous heavy snow during winter or spring has long been regarded as a possible precursor of deficient Indian monsoon rainfall during the subsequent summer. However previous work in this field is inconclusive, in terms of the mechanism that communicates snow anomalies to the monsoon summer, and even the region from which snow has the most impact. In this study we explore these issues in coupled and atmosphere-only versions of the Hadley Centre model. A 1050-year control integration of the HadCM3 coupled model, which well represents the seasonal cycle of snow cover over the Eurasian continent, is analysed and shows evidence for weakened monsoons being preceded by strong snow forcing (in the absence of ENSO) over either the Himalaya/Tibetan Plateau or north/west Eurasia regions. However, empirical orthogonal function (EOF) analysis of springtime interannual variability in snow depth shows the leading mode to have opposite signs between these two regions, suggesting that competing mechanisms may be possible. To determine the dominant region, ensemble integrations are carried out using HadAM3, the atmospheric component of HadCM3, and a variety of anomalous snow forcing initial conditions obtained from the control integration of the coupled model. Forcings are applied during spring in separate experiments over the Himalaya/Tibetan Plateau and north/west Eurasia regions, in conjunction with climatological SSTs in order to avoid the direct effects of ENSO. With the aid of idealized forcing conditions in sensitivity tests, we demonstrate that forcing from the Himalaya region is dominant in this model via a Blanford-type mechanism involving reduced surface sensible heat and longwave fluxes, reduced heating of the troposphere over the Tibetan Plateau and consequently a reduced meridional tropospheric temperature gradient which weakens the monsoon during early summer. Snow albedo is shown to be key to the mechanism, explaining around 50% of the perturbation in sensible heating over the Tibetan Plateau, and accounting for the majority of cooling through the troposphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the oceanic regions that are associated with anomalous Ethiopian summer rains were identified and the teleconnection mechanisms that give rise to these associations have been investigated. Because of the complexities of rainfall climate in the horn of Africa, Ethiopia has been subdivided into six homogeneous rainfall zones and the influence of SST anomalies was analysed separately for each zone. The investigation made use of composite analysis and modelling experiments. Two sets of composites of atmospheric fields were generated, one based on excess/deficit rainfall anomalies and the other based on warm/cold SST anomalies in specific oceanic regions. The aim of the composite analysis was to determine the link between SST and rainfall in terms of large scale features. The modelling experiments were intended to explore the causality of these linkage. The results show that the equatorial Pacific, the midlatitude northwest Pacific and the Gulf of Guinea all exert an influence on the summer rainfall in various part of the country. The results demonstrate that different mechanisms linked to sea surface temperature control variations in rainfall in different parts of Ethiopia. This has important consequences for seasonal forecasting models which are based on statistical correlations between SST and seasonal rainfall totals. It is clear that such statistical models should take account of the local variations in teleconnections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of the formation and propagation of volume anomalies in North Atlantic Mode Waters is presented, based on 100 yr of monthly mean fields taken from the control run of the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3). Analysis of the temporal and. spatial variability in the thickness between pairs of isothermal surfaces bounding the central temperature of the three main North Atlantic subtropical mode waters shows that large-scale variability in formation occurs over time scales ranging from 5 to 20 yr. The largest formation anomalies are associated with a southward shift in the mixed layer isothermal distribution, possibly due to changes in the gyre dynamics and/or changes in the overlying wind field and air-sea heat fluxes. The persistence of these anomalies is shown to result from their subduction beneath the winter mixed layer base where they recirculate around the subtropical gyre in the background geostrophic flow. Anomalies in the warmest mode (18 degrees C) formed on the western side of the basin persist for up to 5 yr. They are removed by mixing transformation to warmer classes and are returned to the seasonal mixed layer near the Gulf Stream where the stored heat may be released to the atmosphere. Anomalies in the cooler modes (16 degrees and 14 degrees C) formed on the eastern side of the basin persist for up to 10 yr. There is no clear evidence of significant transformation of these cooler mode anomalies to adjacent classes. It has been proposed that the eastern anomalies are removed through a tropical-subtropical water mass exchange mechanism beneath the trade wind belt (south of 20 degrees N). The analysis shows that anomalous mode water formation plays a key role in the long-term storage of heat in the model, and that the release of heat associated with these anomalies suggests a predictable climate feedback mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The question of whether and how tropical Indian Ocean dipole or zonal mode (IOZM) interannual variability is independent of El Nino-Southern Oscillation (ENSO) variability in the Pacific is addressed in a comparison of twin 200-yr runs of a coupled climate model. The first is a reference simulation, and the second has ENSO-scale variability suppressed with a constraint on the tropical Pacific wind stress. The IOZM can exist in the model without ENSO, and the composite evolution of the main anomalies in the Indian Ocean in the two simulations is virtually identical. Its growth depends on a positive feedback between anomalous equatorial easterly winds, upwelling equatorial and coastal Kelvin waves reducing the thermocline depth and sea surface temperature off the coast of Sumatra, and the atmospheric dynamical response to the subsequently reduced convection. Two IOZM triggers in the boreal spring are found. The first is an anomalous Hadley circulation over the eastern tropical Indian Ocean and Maritime Continent, with an early northward penetration of the Southern Hemisphere southeasterly trades. This situation grows out of cooler sea surface temperatures in the southeastern tropical Indian Ocean left behind by a reinforcement of the late austral summer winds. The second trigger is a consequence of a zonal shift in the center of convection associated with a developing El Nino, a Walker cell anomaly. The first trigger is the only one present in the constrained simulation and is similar to the evolution of anomalies in 1994, when the IOZM occurred in the absence of a Pacific El Nino state. The presence of these two triggers-the first independent of ENSO and the second phase locking the IOZM to El Nino-allows an understanding of both the existence of IOZM events when Pacific conditions are neutral and the significant correlation between the IOZM and El Nino.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observations suggest a possible link between the Atlantic Multidecadal Oscillation (AMO) and El Nino Southern Oscillation (ENSO) variability, with the warm AMO phase being related to weaker ENSO variability. A coupled ocean-atmosphere model is used to investigate this relationship and to elucidate mechanisms responsible for it. Anomalous sea surface temperatures (SSTs) associated with the positive AMO lead to change in the basic state in the tropical Pacific Ocean. This basic state change is associated with a deepened thermocline and reduced vertical stratification of the equatorial Pacific ocean, which in turn leads to weakened ENSO variability. We suggest a role for an atmospheric bridge that rapidly conveys the influence of the Atlantic Ocean to the tropical Pacific. The results suggest a non-local mechanism for changes in ENSO statistics and imply that anomalous Atlantic ocean SSTs can modulate both mean climate and climate variability over the Pacific.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analytical dispersion relation is derived for linear perturbations to a Rankine vortex governed by surface quasi-geostrophic dynamics. Such a Rankine vortex is a circular region of uniform anomalous surface temperature evolving under quasi-geostrophic dynamics with uniform interior potential vorticity. The dispersion relation is analysed in detail and compared to the more familiar dispersion relation for a perturbed Rankine vortex governed by the Euler equations. The results are successfully verified against numerical simulations of the full equations. The dispersion relation is relevant to problems including wave propagation on surface temperature fronts and the stability of vortices in quasi-geostrophic turbulence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar activity during the current sunspot minimum has fallen to levels unknown since the start of the 20th century. The Maunder minimum (about 1650–1700) was a prolonged episode of low solar activity which coincided with more severe winters in the United Kingdom and continental Europe. Motivated by recent relatively cold winters in the UK, we investigate the possible connection with solar activity. We identify regionally anomalous cold winters by detrending the Central England temperature (CET) record using reconstructions of the northern hemisphere mean temperature. We show that cold winter excursions from the hemispheric trend occur more commonly in the UK during low solar activity, consistent with the solar influence on the occurrence of persistent blocking events in the eastern Atlantic. We stress that this is a regional and seasonal effect relating to European winters and not a global effect. Average solar activity has declined rapidly since 1985 and cosmogenic isotopes suggest an 8% chance of a return to Maunder minimum conditions within the next 50 years (Lockwood 2010 Proc. R. Soc. A 466 303–29): the results presented here indicate that, despite hemispheric warming, the UK and Europe could experience more cold winters than during recent decades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of the 2003 European heat wave have highlighted the need for society to prepare itself for and cope more effectively with heat waves. This is particularly important in the context of predicted climate change and the likelihood of more frequent extreme climate events; to date, heat as a natural hazard has been largely ignored. In order to develop better coping strategies, this report explores the factors that shape the social impacts of heat waves, and sets out a programme of research to address the considerable knowledge gaps in this area. Heat waves, or periods of anomalous warmth, do not affect everyone; it is the vulnerable individuals or sectors of society who will most experience their effects. The main factors of vulnerability are being elderly, living alone, having a pre-existing disease, being immobile or suffering from mental illness and being economically disadvantaged. The synergistic effects of such factors may prove fatal for some. Heat waves have discernible impacts on society including a rise in mortality, an increased strain on infrastructure (power, water and transport) and a possible rise in social disturbance. Wider impacts may include effects on the retail industry, ecosystem services and tourism. Adapting to more frequent heat waves should include soft engineering options and, where possible, avoid the widespread use of air conditioning which could prove unsustainable in energy terms. Strategies for coping with heat include changing the way in which urban areas are developed or re-developed, and setting up heat watch warning systems based around weather and seasonal climate forecasting and intervention strategies. Although heat waves have discernible effects on society, much remains unknown about their wider social impacts, diffuse health issues and how to manage them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A positive salinity anomaly of 0.2 PSU was observed between 50 and 200 m over the years 2000–2001 across the Mozambique Channel at a section at 17°S which was repeated in 2003, 2005, 2006, and 2008. Meanwhile, a moored array is continued from 2003 to 2008. This anomaly was most distinct showing an interannual but nonseasonal variation. The possible origin of the anomaly is investigated using output from three ocean general circulation models (Estimating the Circulation and Climate of the Ocean, Ocean Circulation and Climate Advanced Modeling, and Parallel Ocean Program). The most probable mechanism for the salinity anomaly is the anomalous inflow of subtropical waters caused by a weakening of the northern part of the South Equatorial Current by weaker trade winds. This mechanism was found in all three numerical models. In addition, the numerical models indicate a possible salinization of one of the source water masses to the Mozambique Channel as an additional cause of the anomaly. The anomaly propagated southward into the Agulhas Current and northward along the African coast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The J + 1 ← J transitions (J = 2, 3, 4, 5, and 6) in the microwave spectrum of SiH3NCO have been assigned for the vibrational ground state and for the vibrational states v10 = 1, 2, and 3. The results for v10 = 0 confirm earlier work. The vibration-rotation constants show a remarkable variation with v10 and l10. To a large extent the anomalous behavior of these constants has been explained in terms of a strongly anharmonic potential function for the ν10 vibrational mode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microwave spectra of oxetane (trimethylene oxide) and its three symmetrically deuterated isotopic species have been observed on a Hewlett-Packard microwave spectrometer from 26.5 to 40 GHz. For the parent species, the β-d2 and the αα′-d4 species, about 300 lines have been assigned for each molecule, and for the d6 species more than 600 lines have been assigned. The assignments range from v = 0 to v = 5 in the puckering vibration; although they are mostly Q transitions, either 3 or 4 R transitions have been observed for each vibrational state. The spectra have been interpreted using an effective rotational hamiltonian for each vibrational state, including five quartic distortion constants according to Watson's formulation, and a variable number of sextic distortion constants; in general, the lines are fitted to about ± 10 kHz. The distortion constants show an anomalous zig-zag dependence on the puckering vibrational quantum number, similar to that first observed for the rotational constants by Gwinn and coworkers. This is interpreted according to a simple modification of the standard theory of centrifugal distortion, involving the double minimum potential function in the puckering coordinate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rotational structure has been resolved and analyzed in the 1049-cm−1 parallel fundamental and the 1182 cm−1 perpendicular fundamental bands in the infrared spectrum of the CH3F molecule. Combination bands at 2223 cm−1 and around 2650 cm−1 have also been studied. The effective resolving power of the spectrometer was 0.25 cm−1 for all these bands. The two long-wavelength fundamentals have been analyzed in much greater detail than in previous work, and a complete analysis of the perpendicular band has been made, including the J-structure in the P and R branches of the sub-bands. Rotational constants of CH3F determined in this work and elsewhere are summarized in Table XIII of the text. Some anomalous intensity perturbations in the rotation lines of the 1182-cm−1 fundamental have been observed, and are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lowest-wavenumber vibration of HCNO and DCNO, ν5, is known to involve a largeamplitude low-frequency anharmonic bending of the CH bond against the CNO frame. In this paper the anomalous vibrational dependence of the observed rotational constants B(v5, l5), and of the observed l-doubling interactions, is interpreted according to a simple effective vibration-rotation Hamiltonian in which the appropriate vibrational operators are averaged in an anharmonic potential surface over the normal coordinates (Q5x, Q5y). All of the data on both isotopes are interpreted according to a single potential surface having a minimum energy at a slightly bent configuration of the HCN angle ( 170°) with a maximum at the linear configuration about 2 cm−1 higher. The other coefficients in the Hamiltonian are also interpreted in terms of the structure and the harmonic and anharmonic force fields; the substitution structure at the “hypothetical linear configuration” determined in this way gives a CH bond length of 1.060 Å, in contrast to the value 1.027 Å determined from the ground-state rotational constants. We also discuss the difficulties in rationalizing our effective Hamiltonian in terms of more fundamental theory, as well as the success and limitations of its use in practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use proper orthogonal decomposition (POD) to study a transient teleconnection event at the onset of the 2001 planet-encircling dust storm on Mars, in terms of empirical orthogonal functions (EOFs). There are several differences between this and previous studies of atmospheric events using EOFs. First, instead of using a single variable such as surface pressure or geopotential height on a given pressure surface, we use a dataset describing the evolution in time of global and fully three-dimensional atmospheric fields such as horizontal velocity and temperature. These fields are produced by assimilating Thermal Emission Spectrometer observations from NASA's Mars Global Surveyor spacecraft into a Mars general circulation model. We use total atmospheric energy (TE) as a physically meaningful quantity which weights the state variables. Second, instead of adopting the EOFs to define teleconnection patterns as planetary-scale correlations that explain a large portion of long time-scale variability, we use EOFs to understand transient processes due to localised heating perturbations that have implications for the atmospheric circulation over distant regions. The localised perturbation is given by anomalous heating due to the enhanced presence of dust around the northern edge of the Hellas Planitia basin on Mars. We show that the localised disturbance is seemingly restricted to a small number (a few tens) of EOFs. These can be classified as low-order, transitional, or high-order EOFs according to the TE amount they explain throughout the event. Despite the global character of the EOFs, they show the capability of accounting for the localised effects of the perturbation via the presence of specific centres of action. We finally discuss possible applications for the study of terrestrial phenomena with similar characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ab initio calculations of the energy have been made at approximately 150 points on the two lowest singlet A' potential energy surfaces of the water molecule, 1A' and 1A', covering structures having D∞h, C∞v, C2v and Cs symmetries. The object was to obtain an ab initio surface of uniform accuracy over the whole three-dimensional coordinate space. Molecular orbitals were constructed from a double zeta plus Rydberg basis, and correlation was introduced by single and double excitations from multiconfiguration states which gave the correct dissociation behaviour. A two-valued analytical potential function has been constructed to fit these ab initio energy calculations. The adiabatic energies are given in our analytical function as the eigenvalues of a 2 2 matrix, whose diagonal elements define two diabatic surfaces. The off-diagonal element goes to zero for those configurations corresponding to surface intersections, so that our adiabatic surface exhibits the correct Σ/II conical intersections for linear configurations, and singlet/triplet intersections of the O + H2 dissociation fragments. The agreement between our analytical surface and experiment has been improved by using empirical diatomic potential curves in place of those derived from ab initio calculations.