966 resultados para Angiotensin-converting enzyme activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few data are available in the literature regarding the effect of pentosan polysulfate (PPS) on normal and fibrotic rat livers. In addition, the combination of PPS and carbon tetrachloride (CCl4) has not been studied so far. The objective of this study was to assess the effect of PPS on rat livers treated or not with CCl4 for the induction of liver fibrosis. The study consisted of four stages: 1) hepatic fibrosis induction with CCl4 (N = 36 rats); 2) evaluation of the effect of PPS on CCl4-induced hepatic fibrosis (N = 36 rats); 3) evaluation of the effect of higher doses of PPS in combination with CCl4 (N = 50 rats); 4) evaluation of the presence of an enzymatic inductor effect by PPS (N = 18 rats) using the sodium pentobarbital test which indirectly evaluates hepatic microsomal enzyme activity in vivo. Adult (60 to 70 days) male Wistar rats weighing 180 to 220 g were used. All animals receiving 0.5 ml 8% CCl4 (N = 36) developed hepatic fibrosis, and after 8 weeks they also developed cirrhosis. No delay or prevention of hepatic fibrosis was observed with the administration of 5 mg/kg PPS (N = 8) and 1 mg/kg PPS (N = 8) 1 h after the administration of CCl4, but the increased hepatotoxicity resulting from the combination of the two substances caused massive hepatic necrosis in most rats (N = 45). PPS (40 mg/kg) alone caused hepatic congestion only after 8 weeks, but massive hepatic necrosis was again observed in association with 0.5 ml CCl4 after 1 to 4 weeks of treatment. Unexpectedly, sleeping time increased with time of PPS administration (1, 2, or 3 weeks). This suggests that PPS does not function as an activator of the hepatic microsomal enzymatic system. Further studies are necessary in order to clarify the unexpected increase in hepatotoxicity caused by the combination of CCl4 and high doses of PPS, which results in massive hepatic necrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neuromuscular effects of Bothrops neuwiedii pauloensis (jararaca-pintada) venom were studied on isolated chick biventer cervicis nerve-muscle preparations. Venom concentrations of 5-50 µg/ml produced an initial inhibition and a secondary increase of indirectly evoked twitches followed by a progressive concentration-dependent and irreversible neuromuscular blockade. At venom concentrations of 1-20 µg/ml, the responses to 13.4 mM KCl were inhibited whereas those to 110 µM acetylcholine alone and cumulative concentrations of 1 µM to 10 mM were unaffected. At venom concentrations higher than 50 µg/ml, there was pronounced muscle contracture with inhibition of the responses to acetylcholine, KCl and direct stimulation. At 20-24ºC, the venom (50 µg/ml) produced only partial neuromuscular blockade (30.7 ± 8.0%, N = 3) after 120 min and the initial inhibition and the secondary increase of the twitch responses caused by the venom were prolonged and pronounced and the response to KCl was unchanged. These results indicate that B.n. pauloensis venom is neurotoxic, acting primarily at presynaptic sites, and that enzyme activity may be involved in this pharmacological action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erythrocytes are useful in evaluating K+ transport pathways involved in internal K+ balance. Several forms of H+,K+-ATPase have been described in nephron segments active in K+ transport. Furthermore, the activity of a ouabain-insensitive isoform of H+,K+-ATPase expressed in collecting duct cells may be modulated by acid-base status. Various assays were performed to determine if a ouabain-insensitive K+-ATPase is present in rat erythrocytes and, if so, whether it plays a role in internal K+ balance. Kinetic studies demonstrated that maximal stimulation of enzyme activity was achieved with 2.5 mM K+ at pH 7.4. Subsequent experiments were performed on erythrocyte membranes collected from animals submitted to varying degrees of K+ homeostasis: control rats, K+-depleted rats, K+-loaded rats, and rats rendered hyperkalemic due to acute renal failure. As observed in the collecting duct cell studies, there was a significant decrease in the activity of ouabain-insensitive K+-ATPase in the erythrocytes of both K+-loaded and metabolically alkalotic K+-depleted rats. However, this enzyme activity in erythrocyte membranes of rats with metabolic acidosis-related hyperkalemia was similar to that of control animals. This finding may be interpreted as resulting from two potentially modulating factors: the stimulating effect that metabolic acidosis has on K+-ATPase and the counteracting effect that hyperkalemia and uremia have on metabolic acidosis. In summary, we present evidence of a ouabain-insensitive K+-ATPase in erythrocytes, whose activity is modulated by acid-base status and K+ levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Popular science has emphasized the risks of high sodium intake and many studies have confirmed that salt intake is closely related to hypertension. The present mini-review summarizes experiments about salt taste sensitivity and its relationship with blood pressure (BP) and other variables of clinical and familial relevance. Children and adolescents from control parents (N = 72) or with at least one essential hypertensive (EHT) parent (N = 51) were investigated. Maternal questionnaires on eating habits and vomiting episodes were collected. Offspring, anthropometric, BP, and salt taste sensitivity values were recorded and blood samples analyzed. Most mothers declared that they added "little salt" when cooking. Salt taste sensitivity was inversely correlated with systolic BP (SBP) in control youngsters (r = -0.33; P = 0.015). In the EHT group, SBP values were similar to control and a lower salt taste sensitivity threshold. Obese offspring of EHT parents showed higher SBP and C-reactive protein values but no differences in renin-angiotensin-aldosterone system activity. Salt taste sensitivity was correlated with SBP only in the non-obese EHT group (N = 41; r = 0.37; P = 0.02). Salt taste sensitivity was correlated with SBP in healthy, normotensive children and adolescents whose mothers reported significant vomiting during the first trimester (N = 18; r = -0.66; P < 0.005), but not in "non-vomiter offspring" (N = 54; r = -0.18; nonsignificant). There is evidence for a linkage between high blood pressure, salt intake and sensitivity, perinatal environment and obesity, with potential physiopathological implications in humans. This relationship has not been studied comprehensively using homogeneous methods and therefore more research is needed in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vacuolar H+-ATPase is a large multi-subunit protein that mediates ATP-driven vectorial H+ transport across the membranes. It is widely distributed and present in virtually all eukaryotic cells in intracellular membranes or in the plasma membrane of specialized cells. In subcellular organelles, ATPase is responsible for the acidification of the vesicular interior, which requires an intraorganellar acidic pH to maintain optimal enzyme activity. Control of vacuolar H+-ATPase depends on the potential difference across the membrane in which the proton ATPase is inserted. Since the transport performed by H+-ATPase is electrogenic, translocation of H+-ions across the membranes by the pump creates a lumen-positive voltage in the absence of a neutralizing current, generating an electrochemical potential gradient that limits the activity of H+-ATPase. In many intracellular organelles and cell plasma membranes, this potential difference established by the ATPase gradient is normally dissipated by a parallel and passive Cl- movement, which provides an electric shunt compensating for the positive charge transferred by the pump. The underlying mechanisms for the differences in the requirement for chloride by different tissues have not yet been adequately identified, and there is still some controversy as to the molecular identity of the associated Cl--conducting proteins. Several candidates have been identified: the ClC family members, which may or may not mediate nCl-/H+ exchange, and the cystic fibrosis transmembrane conductance regulator. In this review, we discuss some tissues where the association between H+-ATPase and chloride channels has been demonstrated and plays a relevant physiologic role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the availability of several new agents for the treatment of rheumatoid arthritis (RA), sulfasalazine remains the mainstay because of both cost and experience with its use. Methylenetetrahydrofolate reductase (MTHFR) is involved in folate metabolism and several polymorphisms have been described in the MTHFR gene. Of these, the 677C>T and 1298A>C polymorphisms have been associated with altered enzyme activity. To examine the association between 677C>T and 1298A>C MTHFR polymorphisms and sulfasalazine efficacy for the treatment of RA, a total of 117 RA patients treated with sulfasalazine (1 g daily; duration of treatment 17 ± 5 months) were analyzed. The 677C>T and 1298 A>C polymorphisms were detected using a PCR-RFLP method. RA was diagnosed according to the criteria of the American College of Rheumatology (ACR). The remission of RA symptoms was evaluated according to the ACR 20% response criteria. Allele and genotype frequencies were compared by the two-sided Fisher exact test. The frequency of remission was 47.2% and 44.6% in carriers of 677T and 1298C alleles, compared to 40.7% and 42.0% in carriers of 677C and 1298A alleles, respectively. These differences were statistically non-significant. When the multivariate analysis was additionally adjusted for patients’ age, gender and RA duration, the association of the MTHFR 677T allele with increased frequency of remission was statistically significant. Although RA remission rate in carriers of the MTHFR 677T and 1298C alleles was more frequently observed, it does not seem that 677C>T and 1298A>C MTHFR polymorphisms have a major influence on treatment outcome in RA patients treated with sulfasalazine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Keratinases are enzymes of great importance involved in pathogenic processes of some fungi. They also have a widespread ecological role since they are responsible for the degradation and recycling of keratin. On the one hand, studying them furthers our knowledge of pathogenicity mechanisms, which has important implications for human health, and on the other hand, understanding their ecological role in keratin recycling has biotechnological potential. Here, a wild-type keratinolytic Candida parapsilosis strain isolated from a poultry farm was treated with ethyl methanesulfonate in order to generate mutants with increased keratinase activity. Mutants were then cultured on media with keratin extracted from chicken feathers as the sole source of nitrogen and carbon. Approximately 500 mutants were screened and compared with the described keratinolytic wild type. Three strains, H36, I7 and J5, showed enhanced keratinase activity. The wild-type strain produced 80 U/mL of keratinolytic activity, strain H36 produced 110 U/mL, strain I7, 130 U/mL, and strain J5, 140 U/mL. A 70% increase in enzyme activity was recorded for strain J5. Enzymatic activity was evaluated by zymograms with proteic substrates. A peptidase migrating at 100 kDa was detected with keratin, bovine serum albumin and casein. In addition, a peptidase with a molecular mass of 50 kDa was observed with casein in the wild-type strain and in mutants H36 and J5. Gelatinase activity was detected at 60 kDa. A single band of 35 kDa was found in wild-type C. parapsilosis and in mutants with hemoglobin substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to investigate the effects of eccentric training on the activity of mitochondrial respiratory chain enzymes, oxidative stress, muscle damage, and inflammation of skeletal muscle. Eighteen male mice (CF1) weighing 30-35 g were randomly divided into 3 groups (N = 6): untrained, trained eccentric running (16°; TER), and trained running (0°) (TR), and were submitted to an 8-week training program. TER increased muscle oxidative capacity (succinate dehydrogenase and complexes I and II) in a manner similar to TR, and TER did not decrease oxidative damage (xylenol and creatine phosphate) but increased antioxidant enzyme activity (superoxide dismutase and catalase) similar to TR. Muscle damage (creatine kinase) and inflammation (myeloperoxidase) were not reduced by TER. In conclusion, we suggest that TER improves mitochondrial function but does not reduce oxidative stress, muscle damage, or inflammation induced by eccentric contractions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CYP2D6 enzyme is crucial for the metabolism of tamoxifen. The CYP2D6 gene is highly polymorphic, and individuals can be extensive, intermediate, or poor tamoxifen metabolizers. The aim of this study was to determine the frequencies of the CYP2D6 *3, *4, and *10 alleles in women with breast cancer who were treated with tamoxifen and analyze the association of enzyme activity with prognostic factors and disease-free survival. We observed a high frequency of CYP2D6 *10, with an allelic frequency of 0.14 (14.4%). The *3 allele was not present in the studied population, and *4 had an allelic frequency of 0.13 (13.8%). We conclude that patients with reduced CYP2D6 activity did not present worse tumor characteristics or decreased disease-free survival than women with normal enzyme activity, as the difference was not statistically significant. We also observed a high frequency of CYP2D6 *10, which had not been previously described in this specific population. This study is the first in north-northeastern Brazil that aimed to contribute to the knowledge of the Brazilian regional profile for CYP2D6 polymorphisms and their phenotypes. These findings add to the knowledge of the distribution of different polymorphic CYP2D6 alleles and the potential role of CYP2D6 genotyping in clinical practice prior to choosing therapeutic protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated whether 6-gingerol affects the maturation and proliferation of osteoblast-like MG63 cells in vitro. Osteoblast-like MG63 cells were treated with 6-gingerol under control conditions, and experimental inflammation was induced by tumor necrosis factor-α (TNF-α). Expression of different osteogenic markers and cytokines was analyzed by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay. In addition, alkaline phosphatase (ALP) enzyme activity and biomineralization as markers for differentiation were measured. Treatment with 6-gingerol resulted in insignificant effects on the proliferation rate. 6-Gingerol induced the differentiation of osteoblast-like cells with increased transcription levels of osteogenic markers, upregulated ALP enzyme activity, and enhanced mineralized nodule formation. Stimulation with TNF-α led to enhanced interleukin-6 and nuclear factor-κB expression and downregulated markers of osteoblastic differentiation. 6-Gingerol reduced the degree of inflammation in TNF-α-treated MG-63 cells. In conclusion, 6-gingerol stimulated osteoblast differentiation in normal physiological and inflammatory settings, and therefore, 6-gingerol represents a promising agent for treating osteoporosis or bone inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence indicates that a deficiency of 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) may influence asthma pathogenesis; however, its roles in regulating specific molecular transcription mechanisms remain unclear. We aimed to investigate the effect of 1,25(OH)2D3 on the expression and enzyme activity of histone deacetylase 2 (HDAC2) and its synergistic effects with dexamethasone (Dx) in the inhibition of inflammatory cytokine secretion in a rat asthma model. Healthy Wistar rats were randomly divided into 6 groups: control, asthma, 1,25(OH)2D3 pretreatment, 1,25(OH)2D3 treatment, Dx treatment, and Dx and 1,25(OH)2D3 treatment. Pulmonary inflammation was induced by ovalbumin (OVA) sensitization and challenge (OVA/OVA). Inflammatory cells and cytokines in the bronchoalveolar lavage (BAL) fluid and histological changes in lung tissue were examined. Nuclear factor kappa B (NF-κB) p65 and HDAC2 expression levels were assessed with Western blot analyses and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Enzyme activity measurements and immunohistochemical detection of HDAC2 were also performed. Our data demonstrated that 1,25(OH)2D3 reduced the airway inflammatory response and the level of inflammatory cytokines in BAL. Although NF-κB p65 expression was attenuated in the pretreatment and treatment groups, the expression and enzyme activity of HDAC2 were increased. In addition, 1,25(OH)2D3 and Dx had synergistic effects on the suppression of total cell infusion, cytokine release, and NF-κB p65 expression, and they also increased HDAC2 expression and activity in OVA/OVA rats. Collectively, our results indicated that 1,25(OH)2D3might be useful as a novel HDAC2 activator in the treatment of asthma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, bromelain was recovered from ground pineapple stem and rind by means of precipitation with alcohol at low temperature. Bromelain is the name of a group of powerful protein-digesting, or proteolytic, enzymes that are particularly useful for reducing muscle and tissue inflammation and as a digestive aid. Temperature control is crucial to avoid irreversible protein denaturation and consequently to improve the quality of the enzyme recovered. The process was carried out alternatively in two fed-batch pilot tanks: a glass tank and a stainless steel tank. Aliquots containing 100 mL of pineapple aqueous extract were fed into the tank. Inside the jacketed tank, the protein was exposed to unsteady operating conditions during the addition of the precipitating agent (ethanol 99.5%) because the dilution ratio "aqueous extract to ethanol" and heat transfer area changed. The coolant flow rate was manipulated through a variable speed pump. Fine tuned conventional and adaptive PID controllers were on-line implemented using a fieldbus digital control system. The processing performance efficiency was enhanced and so was the quality (enzyme activity) of the product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Guava is one of the most complete and balanced fruits in in terms of s nutritional value. Highly perishable, due to its intense metabolism during ripening, its shelf life can reach 3 to 5 days under room temperature. The firmness of the green and mature fruits is due mainly to the pectin polymers. The loss of firmness during the guava ripening is due to hydrolytic enzyme activity, which promotes intense solubilization of the cell wall pectins. Given the above, with the purpose of trying to explain the rapid firmness decrease, the centesimal composition and sugar fraction of the guava fruit were determined during ripening at room temperature. The guavas were picked at the half-mature stage and stored for 8 days at 22 ± 1 ºC and 78 ± 1% relative humidity. The analyses conducted were: centesimal composition, sugar fractionation, and infrared absorption spectrometry. The results showed that the guava sugars did not vary during ripening. The estimated pectin levels (5.7%) were higher than those mentioned in the literature (2.4%), which can better explain the role of the pectin in the fruit firmness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigated the fructooligosaccharides (FOS) synthesis by immobilized inulinase obtained from Kluyveromyces marxianus NRRL Y-7571 in aqueous and aqueous-organic systems using sucrose as substrate. The sequential strategy of experimental design was used to optimize the FOS conversion in both systems. For the aqueous-organic system, a 2(6-2) fractional design was carried out to evaluate the effects of temperature, sucrose concentration, pH, aqueous/organic ratio, enzyme activity, and polyethylene glycol concentration. For the aqueous system, a central composite design for the enzyme activity and the sucrose concentration was carried out. The highest fructooligosaccharides yield (Y FOS) for the aqueous-organic system was 18.2 ± S0.9 wt%, at 40 ºC, pH 5.0, sucrose concentration of 60% (w/w), enzyme activity of 4 U.mL-1, and aqueous/organic ratio of 25/75 wt%. The highest Y FOS for the aqueous system was 14.6 ± 0.9 wt% at 40 ºC, pH 5.0, sucrose concentration of 60 wt%, and enzyme activity of 4.0 U.mL-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of natural antifungal substances is motivated by the need for alternatives to existing methods that are not always applicable, efficient, or that do not pose risk to consumers or the environment. Furthermore, studies on the behaviour of toxigenic species in the presence of natural fungicides have enabled their safe application in the food chain In this study, Spirulina LEB-18 phenolic extract was assessed for its antifungal activity on 12 toxigenic strains of Fusarium graminearum isolated from barley and wheat. The susceptible metabolic pathways were assessed through the determination of structural compounds (glucosamine and ergosterol) and enzyme activity of the microorganisms' primary metabolism. The results indicate that phenolic extracts reduced the growth rate of the toxigenic species investigated. The IC50 was obtained by applying 3 to 8% (p/p) of phenolic compounds in relation to the culture medium. The use of this natural fungicide proved promising for the inhibition of fungal multiplication, especially in terms of the inactivation of enzymatic systems (amylase and protease) of Fusarium graminearum.