935 resultados para Amp Receptor Protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteins secreted from adipose tissue are increasingly recognized to play an important role in the regulation of glucose metabolism. However, much less is known about their effect on lipid metabolism. The fasting-induced adipose factor (FIAF/angiopoietin-like protein 4/peroxisome proliferator-activated receptor gamma angiopoietin-related protein) was previously identified as a target of hypolipidemic fibrate drugs and insulin-sensitizing thiazolidinediones. Using transgenic mice that mildly overexpress FIAF in peripheral tissues we show that FIAF is an extremely powerful regulator of lipid metabolism and adiposity. FIAF overexpression caused a 50% reduction in adipose tissue weight, partly by stimulating fatty acid oxidation and uncoupling in fat. In addition, FIAF overexpression increased plasma levels of triglycerides, free fatty acids, glycerol, total cholesterol, and high density lipoprotein (HDL)-cholesterol. Functional tests indicated that FIAF overexpression severely impaired plasma triglyceride clearance but had no effect on very low density lipoprotein production. The effects of FIAF overexpression were amplified by a high fat diet, resulting in markedly elevated plasma and liver triglycerides, plasma free fatty acids, and plasma glycerol levels, and impaired glucose tolerance in FIAF transgenic mice fed a high fat diet. Remarkably, in mice the full-length form of FIAF was physically associated with HDL, whereas truncated FIAF was associated with low density lipoprotein. In human both full-length and truncated FIAF were associated with HDL. The composite data suggest that via physical association with plasma lipoproteins, FIAF acts as a powerful signal from fat and other tissues to prevent fat storage and stimulate fat mobilization. Our data indicate that disturbances in FIAF signaling might be involved in dyslipidemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by class I major histocompatibility complexes (MHC) is the key event in the immune response against virus infected cells or tumor cells. The major determinant of T cell activation is the affinity of the TCR for the peptide-MHC complex, though kinetic parameters are also important. A study of the 2C TCR/SIYR/H-2Kb system using a binding free energy decomposition (BFED) based on the MM-GBSA approach had been performed to assess the performance of the approach on this system. The results showed that the TCR-p-MHC BFED including entropic terms provides a detailed and reliable description of the energetics of the interaction (Zoete and Michielin, 2007). Based on these results, we have developed a new approach to design sequence modifications for a TCR recognizing the human leukocyte antigen (HLA)-A2 restricted tumor epitope NY-ESO-1. NY-ESO-1 is a cancer testis antigen expressed not only in melanoma, but also on several other types of cancers. It has been observed at high frequencies in melanoma patients with unusually positive clinical outcome and, therefore, represents an interesting target for adoptive transfer with modified TCR. Sequence modifications of TCR potentially increasing the affinity for this epitope have been proposed and tested in vitro. T cells expressing some of the proposed TCR mutants showed better T cell functionality, with improved killing of peptide-loaded T2 cells and better proliferative capacity compared to the wild type TCR expressing cells. These results open the door of rational TCR design for adoptive transfer cancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-alpha (PPARalpha)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARalpha null (PPARalphaKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARalpha expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARalpha expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARalphaKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARalpha null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARalpha, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARalpha, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cells expressing T cell receptor (TCR) complexes that lack CD3 delta, either due to deletion of the CD3 delta gene, or by replacement of the connecting peptide of the TCR alpha chain, exhibit severely impaired positive selection and TCR-mediated activation of CD8 single-positive T cells. Because the same defects have been observed in mice expressing no CD8 beta or tailless CD8 beta, we examined whether CD3 delta serves to couple TCR.CD3 with CD8. To this end we used T cell hybridomas and transgenic mice expressing the T1 TCR, which recognizes a photoreactive derivative of the PbCS 252-260 peptide in the context of H-2K(d). We report that, in thymocytes and hybridomas expressing the T1 TCR.CD3 complex, CD8 alpha beta associates with the TCR. This association was not observed on T1 hybridomas expressing only CD8 alpha alpha or a CD3 delta(-) variant of the T1 TCR. CD3 delta was selectively co-immunoprecipitated with anti-CD8 antibodies, indicating an avid association of CD8 with CD3 delta. Because CD8 alpha beta is a raft constituent, due to this association a fraction of TCR.CD3 is raft-associated. Cross-linking of these TCR-CD8 adducts results in extensive TCR aggregate formation and intracellular calcium mobilization. Thus, CD3 delta couples TCR.CD3 with raft-associated CD8, which is required for effective activation and positive selection of CD8(+) T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcription initiation at eukaryotic protein-coding gene promoters is regulated by a complex interplay of site-specific DNA-binding proteins acting synergistically or antagonistically. Here, we have analyzed the mechanisms of synergistic transcriptional activation between members of the CCAAT-binding transcription factor/nuclear factor I (CTF/NF-I) family and the estrogen receptor. By using cotransfection experiments with HeLa cells, we show that the proline-rich transcriptional activation domain of CTF-1, when fused to the GAL4 DNA-binding domain, synergizes with each of the two estrogen receptor-activating regions. Cooperative DNA binding between the GAL4-CTF-1 fusion and the estrogen receptor does not occur in vitro, and in vivo competition experiments demonstrate that both activators can be specifically inhibited by the overexpression of a proline-rich competitor, indicating that a common limiting factor is mediating their transcriptional activation functions. Furthermore, the two activators functioning synergistically are much more resistant to competition than either factor alone, suggesting that synergism between CTF-1 and the estrogen receptor is the result of a stronger tethering of the limiting target factor(s) to the two promoter-bound activators.