988 resultados para American Indian mascots
Resumo:
Human-Computer Interaction (HCI) is a challenging discipline that is currently concerned with the design, implementation and evaluation of interactive systems for human use, as well as the study of major phenomena surrounding them. Indeed, interdisciplinary communities formed by scientists, university teachers and students, people coming from the industry and customers related to HCI are emerging in different parts of the world. In particular, this article overviews the HCI community in the Ibero-American context, which involves hundreds of millions of people working or studying in HCI, whose cultural background is primarily associated with the Spanish and Portuguese languages and cultures, regardless of ethnic and geographical differences. Our final goal is to improve the visibility of this particular HCI community, enhancing the self awareness of its members and their individual motivation and future exchanges.
Resumo:
Environmental histories of plant exchanges have largely centred on their eco- nomic importance in international trade and on their ecological and social impacts in the places where they were introduced. Yet few studies have at- tempted to examine how plants brought from elsewhere become incorporated over time into the regional cultures of material life and agricultural landscapes. This essay considers the theoretical and methodological problems in inves- tigating the environmental history, diversity and distribution of food plants transferred across the Indian Ocean over several millennia. It brings together concepts of creolisation, syncretism, and hybridity to outline a framework for understanding how biotic exchanges and diffusions have been translated into regional landscape histories through food traditions, ritual practices and articu- lation of cultural identity. We use the banana plant - which underwent early domestication across New Guinea, South-east Asia and peninsular India and reached East Africa roughly two thousand years ago - as an example for il- lustrating the diverse patterns of incorporation into the cultural symbolism, material life and regional landscapes of the Indian Ocean World. We show that this cultural evolutionary approach allows new historical insights to emerge and enriches ongoing debates regarding the antiquity of the plant's diffusion from South-east Asia to Africa.
Resumo:
AimOur aim was to understand the interplay of heterogeneous climatic and spatial landscapes in shaping the distribution of nuclear microsatellite variation in burrowing parrots, Cyanoliseus patagonus. Given the marked phenotypic differences between populations of burrowing parrots we hypothesized an important role of geographical as well climatic heterogeneity in the population structure of this species. LocationSouthern South America. MethodsWe applied a landscape genetics approach to investigate the explicit patterns of genetic spatial autocorrelation based on both geography and climate using spatial principal component analysis (sPCA). This necessitated a novel statistical estimation of the species climatic landscape, considering temperature- and precipitation-based variables separately to evaluate their weight in shaping the distribution of genetic variation in our model system. ResultsGeographical and climatic heterogeneity successfully explained molecular variance in burrowing parrots. sPCA divided the species distribution into two main areas, Patagonia and the pre-Andes, which were connected by an area of geographical and climatic transition. Moreover, sPCA revealed cryptic and conservation-relevant genetic structure: the pre-Andean populations and the transition localities were each divided into two groups, each management units for conservation. Main conclusionssPCA, a method originally developed for spatial genetics, allowed us to unravel the genetic structure related to spatial and climatic landscapes and to visualize these patterns in landscape space. These novel climatic inferences underscore the importance of our modified sPCA approach in revealing how climatic variables can drive cryptic patterns of genetic structure, making the approach potentially useful in the study of any species distributed over a climatically heterogeneous landscape.
Resumo:
Oceans, or other wide expanses of inhospitable environment, interrupt present day distributions of many plant groups. Using molecular dating techniques, generally incorporating fossil evidence, we can estimate when such distributions originated. Numerous dating analyses have recently precipitated a paradigm shift in the general explanations for the phenomenon, away from older geological causes, such as continental drift, in favour of more recent, long-distance dispersal (LDD). For example, the 'Gondwanan vicariance' scenario has been dismissed in various studies of Indian Ocean disjunct distributions. We used the gentian tribe Exaceae to reassess this scenario using molecular dating with minimum (fossil), maximum (geological), secondary (from wider analyses) and hypothesis-driven age constraints. Our results indicate that ancient vicariance cannot be ruled out as an explanation for the early origins of Exaceae across Africa, Madagascar and the Indian subcontinent unless a strong assumption is made about the maximum age of Gentianales. However, both the Gondwanan scenario and the available evidence suggest that there were also several, more recent, intercontinental dispersals during the diversification of the group.
Resumo:
The history of biodiversity is characterized by a continual replacement of branches in the tree of life. The rise and demise of these branches (clades) are ultimately determined by changes in speciation and extinction rates, often interpreted as a response to varying abiotic and biotic factors. However, understanding the relative importance of these factors remains a major challenge in evolutionary biology. Here we analyze the rich North American fossil record of the dog family Canidae and of other carnivores to tease apart the roles of competition, body size evolution, and climate change on the sequential replacement of three canid subfamilies (two of which have gone extinct). We develop a novel Bayesian analytic framework to show that competition from multiple carnivore clades successively drove the demise and replacement of the two extinct canid subfamilies by increasing their extinction rates and suppressing their speciation. Competitive effects have likely come from ecologically similar species from both canid and felid clades. These results imply that competition among entire clades, generally considered a rare process, can play a more substantial role than climate change and body size evolution in determining the sequential rise and decline of clades.