937 resultados para Aluminum acetylacetonate
Resumo:
Six new mixed-ligand cobalt(III) complexes of formulation Co(N-N)(2)(O-O)](ClO4)(2) (1-6), where N-N is a N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1, 2), dipyrido3,2-d:2',3'-f] quinoxaline (dpq in 3, 4), and dipyrido3,2-a:2',3'-c]phenazine (dppz in 5, 6), O-O is acetylacetonate (acac in 1, 3, 5) or curcumin (bis(4-hydroxy-3-methoxyphenyl)-1,6-diene-3,5-dione, cur in 2, 4, 6), have been synthesized and characterized. The X-ray crystal structures of complex 1 (as PF6- salt, 1a) and 3 show distorted octahedral geometries formed by the CoN4O2 core. The complexes 1, 3 and 5 having the simple acac ligand are prepared as control species to understand the role of curcumin. The optimized geometries and the frontier orbitals of the curcumin complexes 2, 4, and 6 are obtained from the DFT calculations. The complexes 2, 4, and 6 having the photoactive curcumin moiety display an absorption band in the visible region near 420 nm and show remarkable photocytotoxicity in HeLa cancer cells with respective IC50 values of 7.4 mu M, 5.1 mu M and 1.6 mu M while being much less toxic in dark. MTT assay using complex 6 shows that it is not significantly photocytotoxic to MCF-10A normal cells. The control complexes having the acac ligand are non-toxic both in the presence and absence of light. The cell death is apoptotic in nature and triggered by the photogeneration of reactive oxygen species. Fluorescence imaging experiments on HeLa cells reveals that complex 6 accumulated primarily inside the mitochondria. Human serum albumin (HSA) binding experiments show that the complexes bind HSA with good affinity, but 6 binds with the highest affinity, with a K-b value of 9.8 x 10(5) M-1. Thus, complex 6 with its negligible toxicity in the dark and in normal cells but remarkable toxicity in visible light holds significant photochemotherapeutic potential.
Resumo:
The paper presents a simulation study of loose cylindrically shaped particles packed within a copper plate and aluminum fins. The model presented solves coupled heat and mass transfer equations using the finite volume method based on ANSY S FLUENT medium. Three different arrangements of cylindrical particles are considered. The model is validated with experimental data. It is found that the arrangements which represented monolayer configurations are only marginally better in heat transfer and uptake efficiency than the tri-layer configuration in the presence of fins. However, there is an appreciable difference in the uptake curve between monoand tri-layer configurations in the absence of fins. Finally, it is found that the fin pitch also plays an important role in determining the time constant for the adsorber design.
Resumo:
A newly designed fluorescent aluminum(III) complex (L'-Al; 2) of a structurally characterized non-fluorescent rhodamine Schiff base (L) has been isolated in pure form and characterized using spectroscopic and physico-chemical methods with theoretical density functional theory (DFT) support. On addition of Al(III) ions to a solution of L in HEPES buffer (1 mM, pH 7.4; EtOH-water, 1 : 3 v/v) at 25 degrees C, the systematic increase in chelation-enhanced fluorescence (CHEF) enables the detection of Al(III) ions as low as 60 nM with high selectivity, unaffected by the presence of competitive ions. Interestingly, the Al(III) complex (L'-Al; 2) is specifically able to detect fluoride ions by quenching the fluorescence in the presence of large amounts of other anions in the HEPES buffer (1 mM, pH 7.4) at 25 degrees C. On the basis of our experimental and theoretical findings, the addition of Al3+ ions to a solution of L helps to generate a new fluorescence peak at 590 nm, due to the selective binding of Al3+ ions with L in a 1 : 1 ratio with a binding constant (K) of 8.13 x 10(4) M-1. The Schiff base L shows no cytotoxic effect, and it can therefore be employed for determining the intracellular concentration of Al3+ and F-ions by 2 in living cells using fluorescence microscopy.
Resumo:
In recent years, semisolid manufacturing has emerged as an attractive option for near net shape forming of components with aluminum alloys. In this class of processes, the key to success lies mainly in the understanding of rheological behavior of the semi-solid slurry in the temperature range between liquidus and solidus. The present study focuses on the non-Newtonian flow behavior of the pseudo plastic slurry of Al-7Si-0.3Mg alloy for a wide shear range using a high-temperature Searle-type rheometer. The rheological behavior of the slurry is studied with respect to relevant process variables and microstructural features such as shear rate, shear duration, temperature history, primary particle size, shape, and their distribution. The experiments performed are isothermal tests, continuous cooling tests, shear jump tests, and shear time tests. The continuous cooling experiments are aimed toward studying the viscosity and shear stress evolution within the slurry matrix with increasing solid fraction at a constant shear rate. Three different cooling rates are considered and their effect on flow behavior of the slurry was studied under iso-shear condition. Descending shear jump experiments are performed to understand the viscous instability of the slurry.
Resumo:
The mechanisms of densification and creep were examined during spark plasma sintering (SPS) of alumina doped with a low and high level of zirconia or yttria, over a temperature range of 1173-1573 K and stresses between 25 and 100 MPa. Large additions of yttria led clearly to in situ reactions during SPS and the formation of a yttrium-aluminum garnet phase. Dopants generally lead to a reduction in the densification rate, with substantial reductions noted in samples with similar to 5.5 vol% second phase. In contrast to a stress exponent of n similar to 1 for pure alumina, the doped aluminas displayed n similar to 2 corresponding to an interface-controlled diffusion process. The higher activation energies in the composites are consistent with previous data on creep and changes in the interfacial energies. The results reveal a compensation effect, such that an increase in the activation energy is accompanied by a corresponding increase in the pre-exponential term for diffusion.
Resumo:
Experiments were conducted at laboratory level to treat the oxides of nitrogen (NOx) present in raw and dry biodiesel exhaust utilizing a combination of electric discharge plasma and bauxite residue, i. e., red mud, an industrial waste byproduct from the aluminum industry. In this paper, the adsorption and a possible catalytic property of bauxite residue are discussed. Nonthermal plasma was generated using dielectric barrier discharges initiated by ac/repetitive pulse energization. The effect of corona electrodes on the plasma generation was qualitatively studied through NOx cleaning. The plasma reactor and adsorbent reactors were connected in cascade while treating the exhaust. The diesel generator, running on biodiesel fuel, was electrically loaded to study the effectiveness of the cascade system in cleaning the exhaust. Interestingly, under the laboratory conditions studied, plasma-bauxite residue combination has shown good synergistic properties and enhanced the NOx removal up to about 90%. With proper scaling up, the suggested cascade system may become an economically feasible option to treat the exhaust in larger installations. The results were discussed emphasizing the role of bauxite residue as an adsorbent and as a room temperature catalyst.
Al based ultra-fine eutectic with high room temperature plasticity and elevated temperature strength
Resumo:
Developments of aluminum alloys that can retain strength at and above 250 degrees C present a significant challenge. In this paper we report an ultrafine scale Al-Fe-Ni eutectic alloy with less than 3.5 aa transition metals that exhibits room temperature ultimate tensile strength of similar to 400 MPa with a tensile ductility of 6-8%. The yield stress under compression at 300 degrees C was found to be 150 MPa. We attribute it to the refinement of the microstructure that is achieved by suction casting in copper mold. The characterization using scanning and transmission electron microscopy (SEM and TEM) reveals an unique composite structure that contains the Al-Al3Ni rod eutectic with spacing of similar to 90 nm enveloped by a lamellar eutectic of Al-Al9FeNi (similar to 140 nm). Observation of subsurface deformation under Vickers indentation using bonded interface technique reveals the presence of extensive shear banding during deformation that is responsible for the origin of ductility. The dislocation configuration in Al-Al3Ni eutectic colony indicates accommodation of plasticity in alpha-Al with dislocation accumulation at the alpha-Al/Al3Ni interface boundaries. In contrast the dislocation activities in the intermetallic lamellae are limited and contain set of planner dislocations across the plates. We present a detailed analysis of the fracture surface to rationalize the origin of the high strength and ductility in this class of potentially promising cast alloy. (C) 2015 Elsevier B.V. All rights reserved.