985 resultados para Alsina, Adolfo
Resumo:
The pumping of fluids in pipelines is the most economic and safe form of transporting fluids. That explains why in Europe there was in 1999 about 30.000 Km [7] of pipelines of several diameters, transporting millíons of cubic meters of crude oil end refined products, belonging to COCAWE (assaciation of companies of petroleum of Europe for health, environment and safety, that joint several petroleum companies). In Brazil they are about 18.000 Km of pipelines transporting millions of cubic meters of liquids and gases. In 1999, nine accidents were registered to COCAWE. Among those accidents one brought a fatal victim. The oil loss was of 171 m3, equivalent to O,2 parts per million of the total of the transported volume. Same considering the facts mentioned the costs involved in ao accident can be high. An accident of great proportions can bríng loss of human lives, severe environmental darnages, loss of drained product, loss . for dismissed profit and damages to the image of the company high recovery cost. In consonance with that and in some cases for legal demands, the companies are, more and more, investing in systems of Leak detection in pipelines based on computer algorithm that operate in real time, seeking wíth that to minimize still more the drained volumes. This decreases the impacts at the environment and the costs. In general way, all the systems based on softWare present some type of false alarm. In general a commitment exists betWeen the sensibílity of the system and the number of false alarms. This work has as objective make a review of thé existent methods and to concentrate in the analysis of a specific system, that is, the system based on hydraulic noise, Pressure Point Analyzis (PPA). We will show which are the most important aspects that must be considered in the implementation of a Leak Detection System (LDS), from the initial phase of the analysis of risks passing by the project bases, design, choice of the necessary field instrumentation to several LDS, implementation and tests. We Will make na analysis of events (noises) originating from the flow system that can be generator of false alarms and we will present a computer algorithm that restricts those noises automatically
Resumo:
O processo constante de avaliação técnica e econômica dos sistemas de colheita de madeira é intrínseco às empresas florestais, devido ao fato de corresponder a uma fase de suma importância que despende elevado investimento financeiro. No experimento deste trabalho, estudaram-se o rendimento operacional e custos operacionais e de produção do processador florestal Hypro. A análise técnica englobou estudos de tempos e movimentos pelo método de tempo contínuo. O rendimento operacional foi determinado através do volume, em metros cúbicos de madeira processada. A análise econômica incorporou os parâmetros do custo operacional, custo de processamento da madeira e rendimento energético. A análise dos dados evidenciou que o rendimento operacional por hora efetiva de trabalho foi de 38 árvores e, em metros cúbicos sem casca por hora efetiva de trabalho, de 11,68 m³ h-1, com custo de processamento de madeira sem casca de US$ 6.85 por metro cúbico.
Resumo:
abstract
Resumo:
ln this work the implementation of the SOM (Self Organizing Maps) algorithm or Kohonen neural network is presented in the form of hierarchical structures, applied to the compression of images. The main objective of this approach is to develop an Hierarchical SOM algorithm with static structure and another one with dynamic structure to generate codebooks (books of codes) in the process of the image Vector Quantization (VQ), reducing the time of processing and obtaining a good rate of compression of images with a minimum degradation of the quality in relation to the original image. Both self-organizing neural networks developed here, were denominated HSOM, for static case, and DHSOM, for the dynamic case. ln the first form, the hierarchical structure is previously defined and in the later this structure grows in an automatic way in agreement with heuristic rules that explore the data of the training group without use of external parameters. For the network, the heuristic mIes determine the dynamics of growth, the pruning of ramifications criteria, the flexibility and the size of children maps. The LBO (Linde-Buzo-Oray) algorithm or K-means, one ofthe more used algorithms to develop codebook for Vector Quantization, was used together with the algorithm of Kohonen in its basic form, that is, not hierarchical, as a reference to compare the performance of the algorithms here proposed. A performance analysis between the two hierarchical structures is also accomplished in this work. The efficiency of the proposed processing is verified by the reduction in the complexity computational compared to the traditional algorithms, as well as, through the quantitative analysis of the images reconstructed in function of the parameters: (PSNR) peak signal-to-noise ratio and (MSE) medium squared error
Resumo:
The present work is based on the applied bilinear predictive control applied to an induction motor. As in particular case of the technique based on predictive control in nonlinem systems, these have desperted great interest, a time that present the advantage of being simpler than the non linear in general and most representative one than the linear one. One of the methods, adopted here, uses the linear model "quasi linear for step of time" based in Generalized Predictive Control. The modeling of the induction motor is made by the Vectorial control with orientation given for the indirect rotor. The system is formed by an induction motor of 3 cv with rotor in squirregate, set in motion for a group of benches of tests developed for this work, presented resulted for a variation of +5% in the value of set-point and for a variation of +10% and -10% in the value of the applied nominal load to the motor. The results prove a good efficiency of the predictive bilinear controllers, then compared with the linear cases
Resumo:
Equipment maintenance is the major cost factor in industrial plants, it is very important the development of fault predict techniques. Three-phase induction motors are key electrical equipments used in industrial applications mainly because presents low cost and large robustness, however, it isn t protected from other fault types such as shorted winding and broken bars. Several acquisition ways, processing and signal analysis are applied to improve its diagnosis. More efficient techniques use current sensors and its signature analysis. In this dissertation, starting of these sensors, it is to make signal analysis through Park s vector that provides a good visualization capability. Faults data acquisition is an arduous task; in this way, it is developed a methodology for data base construction. Park s transformer is applied into stationary reference for machine modeling of the machine s differential equations solution. Faults detection needs a detailed analysis of variables and its influences that becomes the diagnosis more complex. The tasks of pattern recognition allow that systems are automatically generated, based in patterns and data concepts, in the majority cases undetectable for specialists, helping decision tasks. Classifiers algorithms with diverse learning paradigms: k-Neighborhood, Neural Networks, Decision Trees and Naïves Bayes are used to patterns recognition of machines faults. Multi-classifier systems are used to improve classification errors. It inspected the algorithms homogeneous: Bagging and Boosting and heterogeneous: Vote, Stacking and Stacking C. Results present the effectiveness of constructed model to faults modeling, such as the possibility of using multi-classifiers algorithm on faults classification
Resumo:
This work presents the development of a prototype of an intelligent active orthosis for lower limbs whit an electronic embedded system. The proposed orthosis is an orthopedical device with the main objective of providing walking capacity to people with partial or total loss of lower limbs movements. In order to design the kinematics, dynamics and the mechanical characteristics of the prototype, the biomechanics of the human body was analized. The orthosis was projected to reproduce some of the movements of the human gait as walking in straight forward, sit down, get up, arise and go down steps. The joints of the orthosis are controlled by DC motors equipped with mechanical reductions, whose purpose is to reduce rotational speed and increase the torque, thus generating smooth movements. The electronic embedded system is composed of two motor controller boards with two channels that communicate with a embedded PC, position sensors and limit switches. The gait movements of the orthosis will be controlled by high level commands from a human-machine interface. The embedded electronic system interprets the high level commands, generates the angular references for the joints of the orthosis, controls and drives the actuators in order to execute the desired movements of the user
Resumo:
The development and refinement of techniques that make simultaneous localization and mapping (SLAM) for an autonomous mobile robot and the building of local 3-D maps from a sequence of images, is widely studied in scientific circles. This work presents a monocular visual SLAM technique based on extended Kalman filter, which uses features found in a sequence of images using the SURF descriptor (Speeded Up Robust Features) and determines which features can be used as marks by a technique based on delayed initialization from 3-D straight lines. For this, only the coordinates of the features found in the image and the intrinsic and extrinsic camera parameters are avaliable. Its possible to determine the position of the marks only on the availability of information of depth. Tests have shown that during the route, the mobile robot detects the presence of characteristics in the images and through a proposed technique for delayed initialization of marks, adds new marks to the state vector of the extended Kalman filter (EKF), after estimating the depth of features. With the estimated position of the marks, it was possible to estimate the updated position of the robot at each step, obtaining good results that demonstrate the effectiveness of monocular visual SLAM system proposed in this paper
Resumo:
This work proposes a method to localize a simple humanoid robot, without embedded sensors, using images taken from an extern camera and image processing techniques. Once the robot is localized relative to the camera, supposing we know the position of the camera relative to the world, we can compute the position of the robot relative to the world. To make the camera move in the work space, we will use another mobile robot with wheels, which has a precise locating system, and will place the camera on it. Once the humanoid is localized in the work space, we can take the necessary actions to move it. Simultaneously, we will move the camera robot, so it will take good images of the humanoid. The mainly contributions of this work are: the idea of using another mobile robot to aid the navigation of a humanoid robot without and advanced embedded electronics; chosing of the intrinsic and extrinsic calibration methods appropriated to the task, especially in the real time part; and the collaborative algorithm of simultaneous navigation of the robots
Resumo:
In Simultaneous Localization and Mapping (SLAM - Simultaneous Localization and Mapping), a robot placed in an unknown location in any environment must be able to create a perspective of this environment (a map) and is situated in the same simultaneously, using only information captured by the robot s sensors and control signals known. Recently, driven by the advance of computing power, work in this area have proposed to use video camera as a sensor and it came so Visual SLAM. This has several approaches and the vast majority of them work basically extracting features of the environment, calculating the necessary correspondence and through these estimate the required parameters. This work presented a monocular visual SLAM system that uses direct image registration to calculate the image reprojection error and optimization methods that minimize this error and thus obtain the parameters for the robot pose and map of the environment directly from the pixels of the images. Thus the steps of extracting and matching features are not needed, enabling our system works well in environments where traditional approaches have difficulty. Moreover, when addressing the problem of SLAM as proposed in this work we avoid a very common problem in traditional approaches, known as error propagation. Worrying about the high computational cost of this approach have been tested several types of optimization methods in order to find a good balance between good estimates and processing time. The results presented in this work show the success of this system in different environments
Resumo:
The public illumination system of Natal/RN city presents some recurring problems in the aspect of monitoring, since currently is not possible to detect in real time the light bulbs which are on throughout the day, or those which are off or burned out, at night. These factors depreciate the efficiency of the services provided, as well as, the use of energetic resources, because there is energetic waste and, consequently, financial resources that could be applied at the own public system illumination. The purpose of the work is create a prototype in substitution to the currently photoelectric relays used at public illumination, that have the same function, as well others: turn on or off the light bulbs remotely (control flexibility by the use of specifics algorithms supervisory), checking the light bulbs status (on or off) and wireless communication with the system through the ZigBee® protocol. The development steps of this product and the tests carried out are related as a way to validate and justify its use at the public illumination
Resumo:
This document proposes to describe a pilot plant for oil wells equipped with plunger lift. In addition to a small size (21,5 meters) and be on the surface, the plant s well has part of its structure in transparent acrylic, allowing easy visualization of phenomena inherent to the method. The rock formation where the well draws its pilot plant fluids (water and air) is simulated by a machine room where they are located the compressor and water pump for the production of air and water. To keep the flow of air and water with known and controlled values the lines that connect the machine room to the wellhole are equipped with flow sensors and valves. It s developed a supervisory system that allows the user a real-time monitoring of pressures and flow rates involved. From the supervisor is still allowed the user can choose how they will be controlled cycles of the process, whether by time, pressure or manually, and set the values of air flow to the water used in cycles. These values can be defined from a set point or from the percentage of valve opening. Results from tests performed on the plant using the most common forms of control by time and pressure in the coating are showed. Finally, they are confronted with results generated by a simulator configured with the the pilot plant s feature
Resumo:
Several mobile robots show non-linear behavior, mainly due friction phenomena between the mechanical parts of the robot or between the robot and the ground. Linear models are efficient in some cases, but it is necessary take the robot non-linearity in consideration when precise displacement and positioning are desired. In this work a parametric model identification procedure for a mobile robot with differential drive that considers the dead-zone in the robot actuators is proposed. The method consists in dividing the system into Hammerstein systems and then uses the key-term separation principle to present the input-output relations which shows the parameters from both linear and non-linear blocks. The parameters are then simultaneously estimated through a recursive least squares algorithm. The results shows that is possible to identify the dead-zone thresholds together with the linear parameters
Resumo:
This paper aims to design and develop a control and monitoring system of vending machines, based on a Central Processing Unit with peripheral Internet communication. Coupled with the condom vending machines, a data acquisition module will be connected to the original circuits in order to collect and send, via internet, the information to the healthy government agencies, in the form of charts and reports. In the face of this, such agencies may analyze these data and compare them with the rates of reduction, in medium or long term, of the STD/AIDS in their respective regions, after the implementation of these vending machines, together with the conventional preventing programs. Reading the methodology, this paper is about an explaining and bibliography research, with the aspect of a qualitative-quantitative methodology, presenting a deductive method of approach and an indirect documentation technique research. About the results of the tests and simulations, we concluded that the implementation of this system will have the same success in any other type of dispenser machine
Resumo:
This work proposes a kinematic control scheme, using visual feedback for a robot arm with five degrees of freedom. Using computational vision techniques, a method was developed to determine the cartesian 3d position and orientation of the robot arm (pose) using a robot image obtained through a camera. A colored triangular label is disposed on the robot manipulator tool and efficient heuristic rules are used to obtain the vertexes of that label in the image. The tool pose is obtained from those vertexes through numerical methods. A color calibration scheme based in the K-means algorithm was implemented to guarantee the robustness of the vision system in the presence of light variations. The extrinsic camera parameters are computed from the image of four coplanar points whose cartesian 3d coordinates, related to a fixed frame, are known. Two distinct poses of the tool, initial and final, obtained from image, are interpolated to generate a desired trajectory in cartesian space. The error signal in the proposed control scheme consists in the difference between the desired tool pose and the actual tool pose. Gains are applied at the error signal and the signal resulting is mapped in joint incrementals using the pseudoinverse of the manipulator jacobian matrix. These incrementals are applied to the manipulator joints moving the tool to the desired pose