988 resultados para Alps
Resumo:
Qualitative and quantitative changes in fossil flora and fauna have been used in many studies to infer climatic change. Here we ask a different question: how do flora and fauna respond to climatic changes such as rapid warming or cooling? As an independent proxy for paleotemperature we take the ratio of oxygen isotopes in biogenically precipitated lake marl and in ostracod shells. This introductory paper describes the project design and the five sites on an altitudinal transect from 600 m to about 2300 m asl in the western Swiss Alps. As cases of climatic cooling and warming we use the beginning and end of the Younger Dryas as major changes, and the Gerzensee and Preboreal oscillations as minor changes. At the two sites of Gerzensee and Leysin these changes are recorded in stable-isotope ratios, and there the time scales can be derived by correlations to the GRIP ice core (Schwander et al., 2000 and von Grafenstein et al., 2000). Biotic responses to climate changes are treated in individual papers using pollen (Wick, 2000), plant macrofossils (Tobolski and Ammann, 2000), and remains of chironomids (Brooks, 2000), beetles and other insects (Lemdahl, 2000), and chydorid Cladocera (Hofmann, 2000). They are followed by a synthesis focusing on quantification of biotic responses (Ammann et al., 2000). In addition, a reconstruction of summer temperatures for the Allerød and the Younger Dryas at Gerzensee is provided by Lotter et al. (2000).
Resumo:
Predicting the timing and amount of tree mortality after a forest fire is of paramount importance for post-fire management decisions, such as salvage logging or reforestation. Such knowledge is particularly needed in mountainous regions where forest stands often serve as protection against natural hazards (e.g., snow avalanches, rockfalls, landslides). In this paper, we focus on the drivers and timing of mortality in fire-injured beech trees (Fagus sylvatica L.) in mountain regions. We studied beech forests in the southwestern European Alps, which burned between 1970 and 2012. The results show that beech trees, which lack fire-resistance traits, experience increased mortality within the first two decades post-fire with a timing and amount strongly related to the burn severity. Beech mortality is fast and ubiquitous in high severity sites, whereas small- (DBH <12 cm) and intermediate-diameter (DBH 12–36 cm) trees face a higher risk to die in moderate-severity sites. Large-diameter trees mostly survive, representing a crucial ecological legacy for beech regeneration. Mortality remains low and at a level similar to unburnt beech forests for low burn severity sites. Beech trees diameter, the presence of fungal infestation and elevation are the most significant drivers of mortality. The risk of beech to die increases toward higher elevation and is higher for small-diameter than for large-diameter trees. In case of secondary fungi infestation beech faces generally a higher risk to die. Interestingly, fungi that initiate post-fire tree mortality differ from fungi occurring after mechanical injury. From a management point of view, the insights about the controls of post-fire mortality provided by this study should help in planning post-fire silvicultural measures in montane beech forests.
Resumo:
A third glacier inventory (GI3) is presented for the province of Salzburg where 173 glaciers are located in the seven mountain ranges: Ankogel (47°4'N, 13°14'E), Glockner, Granatspitz, Sonnblick (Goldberg), Hochkönig, Venediger and Zillertal (47°8'N, 12°7'E). The basis for the new GI3 are orthophotos of 2007 and 2009 and the digital elevation model (DEM) of the southern part of Salzburg. On the basis of former inventories, area- and volume changes have been calculated. The biggest relative loss of glacier area per mountain range was found in the Ankogel range and on Hochkönig as a result of the disrupted structure of their small and thin glaciers. In terms of absolute values, the largest changes took place in the Glockner- and Venediger range with an area loss of -10.1 km**2 and -9.7 km**2 during the period between GI1 (1969) and GI3 (2007/2009), respectively. Volume changes have been calculated for nearly half of the glacier area in Salzburg, where DEMs were available. The Glockner, Granatspitz and Sonnblick mountain ranges showed a volume loss of -0.481 km**3 which corresponds to a mean thickness change of -10.5 m. An extrapolation of these changes to all of the 173 glaciers in Salzburg results in a loss of about 1.04 km**3 between GI1 and GI3 and 0.44 km**3 between GI2 and GI3. Overall annual changes in the province of Salzburg between GI2 and GI3 were higher than between GI1 and GI2 and show likewise changes such as those of Tyrol.
Resumo:
The objective of this study is the production of an Alpine Permafrost Index Map (APIM) covering the entire European Alps. A unified statistical model that is based on Alpine-wide permafrost observations is used for debris and bedrock surfaces across the entire Alps. The explanatory variables of the model are mean annual air temperatures, potential incoming solar radiation and precipitation. Offset terms were applied to make model predictions for topographic and geomorphic conditions that differ from the terrain features used for model fitting. These offsets are based on literature review and involve some degree of subjective choice during model building. The assessment of the APIM is challenging because limited independent test data are available for comparison and these observations represent point information in a spatially highly variable topography. The APIM provides an index that describes the spatial distribution of permafrost and comes together with an interpretation key that helps to assess map uncertainties and to relate map contents to their actual expression in terrain. The map can be used as a first resource to estimate permafrost conditions at any given location in the European Alps in a variety of contexts such as research and spatial planning. Results show that Switzerland likely is the country with the largest permafrost area in the Alps, followed by Italy, Austria, France and Germany. Slovenia and Liechtenstein may have marginal permafrost areas. In all countries the permafrost area is expected to be larger than the glacier-covered area.
Resumo:
A mass-spectrometric uranium-series dated stalagmite from the Central Alps of Austria provides unprecedented new insights into high-altitude climate change during the peak of isotope stage 3. The stalagmite formed continuously between 57 and 46 kyr before present. A series of 'Hendy tests' demonstrates that the outer parts of the sample show a progressive increase of both stable C and O isotope values. No such covariant increase was detected within the axial zone. This in conjunction with other observations suggests that the continuous stable oxygen isotope profile obtained from the axial zone of the stalagmite largely reflects the unaltered isotopic composition of the cave drip water. The delta18O record shows events of high delta18O values that correlate remarkably with Interstadials 15 (a and b), 14 and 12 identified in the Greenland ice cores. Interstadial 15b started rapidly at 55.6 kyr and lasted ~300 yr only, Interstadial 15a peaked 54.9 kyr ago and was even of shorter duration (~100 yr), and Interstadial 14 commenced 54.2 kyr ago and lasted ~3000 yr. This stalagmite thus represents one of the first terrestrial archives outside the high latitudes which record precisely dated Dansgaard-Oeschger (D/O) events during isotope stage 3. Provided that rapid D/O warmings occurred synchronously in Greenland and the European Alps, the new data provide an independent tool to improve the GRIP and GISP2 chronologies.
Resumo:
The Vernagtferner in the Ötztaler Alps (Tirol) has been mapped after terrestrial-photogrammetric surveying by Sebastian Finsterwalder in 1889, Otto von Gruber in 1912, and Heinrich Schatz in 1938. The new, four-colored map in the scale 1: 10.000 enclosed in this issue was composed from aerial photographs of 1969. It was conceived as topographicaI map with additional geodetic and glaciological content. The methods of survey are explained and the means of cartographic representation are discussed.