986 resultados para Agonist-antagonist relationship
Resumo:
Background: There are many advantages to the application of complete mitochondrial (mt) genomes in the accurate reconstruction of phylogenetic relationships in Metazoa. Although over one thousand metazoan genomes have been sequenced, the taxonomic sampling is highly biased, left with many phyla without a single representative of complete mitochondrial genome. Sipuncula (peanut worms or star worms) is a small taxon of worm-like marine organisms with an uncertain phylogenetic position. In this report, we present the mitochondrial genome sequence of Phascolosoma esculenta, the first complete mitochondrial genome of the phylum. Results: The mitochondrial genome of P. esculenta is 15,494 bp in length. The coding strand consists of 32.1% A, 21.5% C, 13.0% G, and 33.4% T bases (AT = 65.5%; AT skew = -0.019; GC skew = -0.248). It contains thirteen protein-coding genes (PCGs) with 3,709 codons in total, twenty-two transfer RNA genes, two ribosomal RNA genes and a non-coding AT-rich region (AT = 74.2%). All of the 37 identified genes are transcribed from the same DNA strand. Compared with the typical set of metazoan mt genomes, sipunculid lacks trnR but has an additional trnM. Maximum Likelihood and Bayesian analyses of the protein sequences show that Myzostomida, Sipuncula and Annelida (including echiurans and pogonophorans) form a monophyletic group, which supports a closer relationship between Sipuncula and Annelida than with Mollusca, Brachiopoda, and some other lophotrochozoan groups. Conclusion: This is the first report of a complete mitochondrial genome as a representative within the phylum Sipuncula. It shares many more similar features with the four known annelid and one echiuran mtDNAs. Firstly, sipunculans and annelids share quite similar gene order in the mitochondrial genome, with all 37 genes located on the same strand; secondly, phylogenetic analyses based on the concatenated protein sequences also strongly support the sipunculan + annelid clade (including echiurans and pogonophorans). Hence annelid "key-characters" including segmentation may be more labile than previously assumed.
Resumo:
The relationship between microbial colonization of two kinds of passive metals and ennobling of their corrosion potentials (E-corr) were studied. Two types of passive metal coupons were exposed to natural seawater for about ten days. Under laboratory conditions, all corrosion potentials of the samples ennobled for about 200 mV. Epifluorescence microscopy showed that bacteria adsorption was the main process during about the first day immersion and bacteria reproduced in the following days. The bacteria number increased on the metal surface according to an exponential law and the kinetics of bacteria adsorption at the metal surface during this period was proposed. The ennoblement of E-corr was similar to the increasing bacteria number: E-corr increased quickly during the bacteria adsorption process and increased slowly after biofilms had formed.
Resumo:
The presumed pair relationships of intercontinental vicariad species in the Podophyllum group (Sinopodophyllum hexandrum vs. Podophyllum pelatum and Diphylleia grayi vs. D. cymosa) were recently, considered to be paraphyletic. In the present paper, the trnL-F and ITS gene sequences of the representatives were used to examine the sister relationships of these two vicariad species. A heuristic parsimony analysis based on the trnLF data identified Diphylleia as the basal clade of the other three genera, but provided poor resolution of their inter-relationships. High sequence divergence was found in the ITS data. ITS1 region, more variable but parsimonyuninformative. has no phylogenetic value, Sequence divergence of the ITS2 region provided abundant, phylogenetically informative variable characters. Analysis of ITS2 sequences confirmeda sister relationship between the presumable vicariad species, in spite of a low bootstrap support for Sinopodophyllum hexandrum vs. Podophyllum pelatum. The combined ITS2 and trnL-F data enforced a sister relationship between Sinopodophyllum hexandrum and Podophyllum pelatum with an elevated bootstrap support of 100%. Based on molecular phylogeny, the morphological evolution of this group was discussed. The self-pollination might have evolved from cross-fertilization two times in this group. The different pollination and seed dispersal systems of Sinopodophyllum hexandrum and Podophlyllum pelatum resulted from their adaptations to different ecological habitats. The divergence time of Sinopodophyllum hexandrum-Podophyllum pelatum is estimated to be 6.52+/-1.89 myr based on the ITS divergence. The divergence of this species pair predated or co-occurred with the recent uplift of the Himalayas 4-3 myr during the late Miocene and the formation of the alpine habitats. Sinopodophyllum hexandrum developed a host of specialized characters in its subsequent adaptation to the arid alpine surroundings. The present study confirmed the different patterns of species relationship between Asian-North American disjuncts. The isolation of plant elements between North America and eastern Asia must have been a gradual process, resulting in the different phylogenetic patterns and divergence times of the disjuncts.
Resumo:
The conversion of n-C4H10 was undertaken on MoO3/HZSM-5 catalyst at 773-973K and the phases of molybdenum species were detected by XRD. The XRD results show that bulk MoO3 on HZSM-5 can be readily reduced by n-C4H10 to MoO2 at 773 K and MoO2 can be gradually carburized to molybdenum carbide above 813 K. The molybdenum carbide formed from the carburization of MoO2 with n-C4H10 below 893 K is alpha-MoC1-x with fcc-structure, while hcp-molybdenum carbide formed above 933 K. During the evolution of MoO3 to MoO2 (>773 K) or the carburization of MoO2 to molybdenum carbide (>813 K), deep oxidation, cracking and coke deposition are serious, in particular at higher reaction temperatures, these lead to the poor selectivity to aromatics. Aromatization of n-C4H10 can proceed catalytically on both Mo2C/HZSM-5 and MoO2/HZSM-5, the distribution of the products for the two catalysts is similar below 813 K, but the, activity for Mo2C/HZSM-5 is much higher than that for MoO2/HZSM-5. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Mental dependence, characterized by craving and impulsive seeking behavior, is the matter of intensive study in the field of drug addiction. The mesolimbic dopamine system has been suggested to play an important role in rewarding of drugs and relapse. Although chronic drug use can induce neuroadaptations of the mesolimbic system and changes of drug reinforcement, these mechanisms cannot fully account for the craving and the compulsive drug-using behavior of addicts. Acknowledging the reinforcement effects of drugs, most previous studies have studied the impact of environmental cues and conditioned learning on addiction behavior, often using established classical or operant conditioning model. These studies, however, paid little attention to the role of cognitive control and emotion in addiction. These mental factors that are believed to have an important influence on conditioned learning. The medial prefrontal cortex (mPFC) has close anatomic and functional connections with the mesolimbic dopamine system. A number of the cognitive neurological studies demonstrate that mPFC is involved in motivation, emotional regulation, monitoring of responses and other executive functions. Thus we speculated that the function of abnormality in mPFC following chronic drug use would cause related to the abnormal behavior in addicts including impulse and emotional changes. In the present study of a series of experiments, we used functional magnetic resonance imaging to examine the hemodynamic response of the mPFC and related circuits to various cognitive and emotional stimuli in heroin addicts and to explore the underlying dopamine neuromechnism by microinjection of tool drugs into the mPFC in laboratory animals. In the first experiment, we found that heroin patients, relative to the normal controls, took a much shorter time and committed more errors in completing the more demanding of cognitive regulation in the reverse condition of the task, while the neural activity in anterior cingulate cortex (ACC) was attenuated. In the second experiment, the scores of the heroin patients in self-rating depression scale (SDS) and Self-rating anxiety scale (SAS) were significantly higher than the normal controls and they rated the negative pictures more aversive than the normal controls. Being congruent with the behavioral results, hemodynamic response to negative pictures showed significant difference between the two groups in bilateral ventral mPFC (VMPFC), amygdala, and right thalamus. The VMPFC of patients showed increased activation than normal controls, whereas activation in the amygdala of patients was weaker than that in normal subjects. Our third experiment showed that microinjection of D1 receptor agonist SKF38393 into the mPFC of rats decreased hyperactivity, which was induced by morphine injection, in contrast, D1 receptor antagonist SCH23390 increased the hyperactivity, These findings suggest: (1) The behavior and neural activity in ACC of addicts changed in chronic drug users. Their impulsive behavior might result from the abnormal neural activity in the mPFC especially the ACC. (2) Heroine patients were more depress and anxiety than normal controls. The dysfunction of the mPFC---amygdala circuit of heroine addicts might be related to the abnormal emotion response. (3) Dopamine in the mPFC has an inhibitory effect on morphine induced behavior. The hyperactivity induced by chronic morphine was reduced by dopamine increase with D1 receptor agonist, confirm the first experiment that the neuroadaption of mPFC system induced by chronic morphine administration appears to be the substrate the impulse behavior of drug users.
Resumo:
Rewarding experience after drug use is one of the mechanisms of substance abuse. Previous evidence indicated that rewarding experience was closely related to learning processes. Neuroscience studies have already established multiple-mode learning model. Reference memory system and habit memory are associated with hippocampus and dorsa striatum respectively, which are also involved in the rewarding effect of morphine. However, the relationship between spatial/habit learning and morphine reward property is still unclear. After drug use, with sensitization to rewarding effect, spatial learning is also changed. To study the mechanism of increment of spatial learning would provide new perspective about reward learning. Based on the individual difference between spatial learning and reward learning, the experiments studied relationship between the two leaning abilities and tested the function of dorsal hippocampus and dorsal striatum in morphine-induced CPP. The results were summarized below: 1 In a single-rule learning water maze task, subjects better in spatial learning also excelled in rewarding learning. In a multi-rule learning task, morphine administration was more rewarding to subjects of use place strategy. 2 Treatment potentiating the rewarding effect of morphine also increased place-rule learning, with no significant improvement in habit learning. 3 Intracranial injections into CA1 of hippocampus or dorsal striatum of M1 antagonist, Pirenzepine, could block the establishment of morphine CPP after three days morphine treatment. In contrast, the antagonist of D1 receptor SCH23390 had no blocking effect. Both Pirenzepine and SCH23390 blocked the locomotor-stimulating effect of morphine. In summary, spatial learning stimulated the behavioral expression of morphine’s rewarding effect, in which CA1 of hippocampus was critically involved. On the other side, a pretreatment schedule of morphine, while increased the rewarding effect, improved place-rule learning, indicating that spatial learning might be one chain of sensitization to drug rewards effects
Resumo:
Prenatal morphine exposure affects neural development of fetus by impairing learning and memory, and increasing susceptibility to morphine abuse. Because nervous systems have different developmental characteristics during different developmental stages, administration of morphine at different stages also has different effects on learning, memory, and susceptibility to morphine. Due to the precise developmental processes of neurotransmitter systems in chick embryo’s brain, and unique superiority of chick embryo model, the purpose of the present studies was to explore critical periods correlated to the memory impairment and the increasing susceptibility to morphine, via one-trial passive avoidance and conditioned place preference as behavior models. Then the possible roles of mu and delta opioid receptors as the possible mechanism were analyzed. Experiment 1 showed that injecting low dose of morphine (1 mg/kg) during the period embryonic 5 to 8 significantly impaired the function of learning and memory, worse than any other periods of the same treatment. Experiment 2 showed that injecting low dose of morphine during the period embryonic 17 to 20 significantly increased the susceptibility to morphine in the new-born chicks. The affected chicks acquired the morphine conditioned place preference more quickly, and maintained it much longer. Experiment 3 showed that during E5-8, injecting delta receptor antagonist naltrindole reversed the learning and memory impairment caused by morphine while delta receptor agonist DPDPE impaired learning and partial memory function. On the other hand, mu opioid receptors had little effect. As for E17-20, given naloxonazine can reverse the increases of susceptibility to morphine, and the mu receptor agonist DAGO cause the increases of susceptibility to morphine. Delta receptors have no effect. The above results demonstrated that prenatal morphine expousure at different developmental periods of chick embryo caused different influences on memory and susceptibility to morphine. That is, E5-8 is the critical period correlate to memory impairment; and E17-20 is the critical period correlate to susceptibility to morphine. Delta receptors were critical in learning and memory impairment while mu receptors in susceptibility.