959 resultados para Aging of materials


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The role of matrix microstructure on the fracture of Al-alloy composites with 60 vol% alumina particulates was studied. The matrix composition and microstructure were systematically varied by changing the infiltration temperature and heat treatment. Characterization was carried out by a combination of metallography, hardness measurements, and fracture studies conducted on compact tension specimens to study the fracture toughness and crack growth in the composites. The composites showed a rise in crack resistance with crack extension (R curves) due to bridges of intact matrix ligaments formed in the crack wake. The steady-state or plateau toughness reached upon stable crack growth was observed to be more sensitive to the process temperature rather than to the heat treatment. Fracture in the composites was predominantly by particle fracture, extensive deformation, and void nucleation in the matrix. Void nucleation occurred in the matrix in the as-solutionized and peak-aged conditions and preferentially near the interface in the underaged and overaged conditions. Micromechanical models based on crack bridging by intact ductile ligaments were modified by a plastic constraint factor from estimates of the plastic zone formed under indentations, and are shown to be adequate in predicting the steady-state toughness of the composite.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanoembedded aluminum alloys with bimetallic dispersoids of Sn and Pb of compositions Sn82–Pb18, Sn64–Pb36, and Sn54–Pb46 were synthesized by rapid solidification. The two phases, face-centered-cubic Pb and tetragonal Sn solid-solution, coexist in all the particles. The crystallographic relation between the two phases and the matrix depends upon the solidification pathways adopted by the particles. For Al–(Sn82–Pb18), we report a new orientation relation given by [011]Al//[010]Sn and (o11)A1//(101)Sn. Pb exhibits a cube-on-cube orientation with Al in few particles, while in others no orientation relationship could be observed. In contrast, Pb in Sn64–Pb36 and Sn54–Pb46 particles always exhibits cube-on-cube orientation with the matrix. Sn does not show any orientation relationship with Al or Pb in these cases. Differential scanning calorimetry studies revealed melting at eutectic temperature for all compositions, although solidification pathways are different. Attempts were made to correlate these with the melting and heterogeneous nucleation characteristics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new type of bearing alloy containing ultrafine sized tin and silicon dispersions in aluminum was designed using laser surface alloying and laser remelting techniques. The microstructures of these non-equilibrium processed alloys were studied in detail using scanning and transmission electron microscopy. The microstructures revealed three distinct morphologies of tin particles namely elongated particles co-existing with silicon, globular particles, and very fine particles. Our detailed analyses using cellular growth theories showed that the formation of these globular tin particles was due to the pinching off of the tin rich liquid in the inter-cellular space by the growth of aluminum secondary dendrite arms. Evidence of fine recrystallized aluminum grains at the top layer due to constrained solidification was shown. Thermal analyses suggested that melting of the spherical shaped tin particles was controlled by the binary aluminum-tin eutectic reaction, whereas non-spherical tin particles melted via the tin-silicon eutectic reaction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lead ruthenate is used as a bifunctional electrocatalyst for both oxygen evolution and reduction and as a conducting component in thick-film resistors. It also has potential applications in supercapacitors and solid oxide fuel cells. However, thermodynamic properties of the compound have not been reported in the literature. The standard Gibbs energy of formation has now been determined in the temperature range from 873 to 1123 K using a solid-state cell incorporating yttria-stabilized zirconia (YSZ) as the electrolyte, a mixture of PbO + Pb2Ru2O6.5 + Ru as the measuring electrode, and Ru + RuO2 as the reference. The design of the measuring electrode is based on a study of phase relations in the ternary system Pb–Ru–O at 1123 K. For the reaction,S0884291400095625_eqnU1 the standard enthalpy of formation and standard entropy at 298.15 K are estimated from the high-temperature measurements. An oxygen potential diagram for the system Pb–Ru–O is composed based on data obtained in this study and auxiliary information from the literature

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electron beam welding technique was used to join Zr41Ti14Cu12Ni10Be23 bulk metallic glass (BMG) to crystalline pure Zr. Compositional, microstructural, and mechanical property variations across the welded interface were evaluated. It is shown that a crystalline layer develops close to the welding interface. Transmission electron microscopy of this layer indicates the crystalline phase to be tetragonal with lattice parameters close to that reported for Zr2Ni. However, the composition of this phase is different as it contains other alloying additions. The interface layer close to the bulk metallic glass side contains nanocrystalline Zr2Cu phase embedded in the glassy matrix. Nanoindentation experiments indicate that the hardness of the crystalline layer, although less than the bulk metallic glass, is more than the Zr itself. Commensurately, tensile tests indicate that the failure of the welded samples occurs at the Zr side rather than at the weld joint.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report on the synthesis of CdSe magic-sized clusters (MSCs) and their evolution into 1D rod and wires retaining the diameter of the order of MSCs. At the beginning of the reaction, different classes of stable MSCs with band gaps of 3.02 eV and 2.57 eV are formed, which exhibit sharp band edge photoluminescence features with FWHM in the order of similar to 13 nm. Reaction annealing time was carried out in order to monitor the shape evolution of the MSCs. We find that magic sized CdSe evolve into 1D rod and wires retaining the same diameter upon increasing annealing time. We observed the gradual emergence of new red shifted emission peaks during this shape evolution process, which emerge as a result of one dimensional energy transfer within the magic sized clusters during their subsequent transformation into rods and wires. The smallest, the second smallest sized MSC and the wires sequentially act as donors and acceptors during the size evolution from small MSCs to larger ones, and then eventually to wires. Steady-state and time-resolved luminescent spectroscopy revealed Forster resonance energy transfer (FRET) between the MSCs to the rods and wires.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conjugated polymers are intensively pursued as candidate materials for emission and detection devices with the optical range of interest determined by the chemical structure. On the other hand the optical range for emission and detection can also be tuned by size selection in semiconductor nanoclusters. The mechanisms for charge generation and separation upon optical excitation, and light emission are different for these systems. Hybrid systems based on these different class of materials reveal interesting electronic and optical properties and add further insight into the individual characteristics of the different components. Multilayer structures and blends of these materials on different substrates were prepared for absorption, photocurrent (Iph), photoluminescence (PL) and electroluminscence (EL) studies. Polymers chosen were derivatives of polythiophene (PT) and polyparaphenylenevinylene (PPV) along with nanoclusters of cadmium sulphide of average size 4.4 nm (CdS-44). The photocurrent spectral response in these systems followed the absorption response around the band edges for each of the components and revealed additional features, which depended on bias voltage, thickness of the layers and interfacial effects. The current-voltage curves showed multi-component features with emission varying for different regimes of voltage. The emission spectral response revealed additive features and is discussed in terms of excitonic mechanisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe+ ion beam to an ion fluence of about 1016 ions-cm−2. Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti5Si3 intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the synthesis of thin films of B–C–N and C–N deposited by N+ ion-beam-assisted pulsed laser deposition (IBPLD) technique on glass substrates at different temperatures. We compare these films with the thin films of boron carbide synthesized by pulsed laser deposition without the assistance of ion-beam. Electron diffraction experiments in the transmission electron microscope shows that the vapor quenched regions of all films deposited at room temperature are amorphous. In addition, shown for the first time is the evidence of laser melting and subsequent rapid solidification of B4C melt in the form of micrometer- and submicrometer-size round particulates on the respective films. It is possible to amorphize B4C melt droplets of submicrometer sizes. Solidification morphologies of micrometer-size droplets show dispersion of nanocrystallites of B4C in amorphous matrix within the droplets. We were unable to synthesize cubic carbon nitride using the current technique. However, the formation of nanocrystalline turbostratic carbo- and boron carbo-nitrides were possible by IBPLD on substrate at elevated temperature and not at room temperature. Turbostraticity relaxes the lattice spacings locally in the nanometric hexagonal graphite in C–N film deposited at 600 °C leading to large broadening of diffraction rings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Films comprised of nanowires of beta-NaxV2O5 measuring 20-200 nm in diameter and 10-30 mum in length have been prepared on glass substrates by metalorganic chemical vapor deposition using the beta-diketonate complex, vanadyl acetyl acetonate, as precursor, but without the use of either templates or catalysts. Films consisting of nanowires of monophasic beta-NaxV2O5 with a preferred orientation along (h0l) are formed only at 550 degreesC, whereas those deposited at 540 degreesC comprise a mixture of nanowires (beta-NaxV2O5) and platelets (V2O5). The films deposited at lower temperatures are less crystalline and comprise a mixture of vanadium oxide phases. From the observations that nanowires are formed only in the narrow temperature range of 540-550 degreesC, and from the critical dependence of the formation of nanowires on the balance between the CVD growth rate and the evaporation rate of the film, it is inferred that the formation of nanowires of beta-NaxV2O5 is due to chemical vapor transport.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Unintentionally doped homoepitaxial InSb films have been grown by liquid phase epitaxy employing ramp cooling and step cooling growth modes. The effect of growth temperature, degree of supercooling and growth duration on the surface morphology and crystallinity were investigated. The major surface features of the grown film like terracing, inclusions, meniscus lines, etc are presented step-by-step and a variety of methods devised to overcome such undesirable features are described in sufficient detail. The optimization of growth parameters have led to the growth of smooth and continuous films. From the detailed morphological, X-ray diffraction, scanning electron microscopic and Raman studies, a correlation between the surface morphology and crystallinity has been established.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Liquid phase co-spray forming (LPCSF) was employed to produce two Al-Si-Pb alloys. The preforms thus obtained were then subjected to hot extrusion at different extrusion ratios. Following extrusion, the materials were tensile tested at room temperature. The distribution of Pb particles and the microstructural characterization in as-formed preforms and in the extruded rods were studied on the basis of SEM observation. The influence of the Pb content on the mechanical properties was investigated. (C) 2002 Published by Elsevier Science B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Perovskite oxides LaMO3 (M = Cr, Co, Ni), have been successfully prepared using microwaves of 2.45 GHz. Microwave preparation is rapid, clean and energy efficient. Preparation of LaCrO3, LaCoO3 and LaNiO3 has been achieved in 3 min, 5 min and 10 min respectively. Direct reaction between component oxides is used for the preparation of LaCrO3 and LaCoO3, whereas nitrates are used as starting materials for LaNiO3 preparation. Products have been characterized using XRD, IR spectroscopy and SEM. Their dc electrical conductivity has also been studied and their fracture behaviour has been examined. All three microwave prepared oxide powders are of submicron size. These perovskite oxides have been sintered to very high densities using microwaves. Possible mechanisms of the microwave-material interaction both during preparation and during sintering have been discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A wet chemical route is developed for the preparation of Sr2CeO4 denoted the carbonate-gel composite technique. This involves the coprecipitation of strontium as fine particles of carbonates within hydrated gels of ceria (CeO2.xH(2)O, 40of ammonium carbonate. During calcination, CeO2.xH(2)O dehydroxylation is followed by the reaction with SrCO3 to form Sr2CeO4 with complete phase purity. Doping of other rare-earths is carried out at the co-precipitation stage. The photoluminescence (PL) observed for Sr2CeO4 originates from the Ce4+-O2- charge-transfer (CT) transition resulting from the interaction of Ce4+ ion with the neighboring oxide ions. The effect of next-nearest-neighbor (NNN) environment on the Ce4+-O2- CT emission is studied by doping with Eu3+, Sm3+ or Yb3+ which in turn, have unique charge-transfer associated energy levels in the excited states in oxides. Efficient energy transfer occurs from Ce4+-O2- CT state to trivalent lanthanide ions (Ln(3+)) if the latter has CT excited states, leading to sensitizer-activator relation, through non-resonance process involving exchange interaction. Yb3+-substituted Sr2CeO4 does not show any line emission because the energy of Yb3+-O2- CT level is higher than that of the Ce4+-O2- CT level. Sr2-xEuxCeO4+x/2 shows white emission at xless than or equal to0.02 because of the dominant intensities of D-5(2)-F-7(0-3) transitions in blue-green region whereas the intensities of D-5(0)-F-7(0-3) transitions in orange-red regions dominate at concentrations xgreater than or equal to0.03 and give red emission. The appearance of all the emissions from D-5(2), D-5(1) and D-5(0) excited states to the F-7(0-3) ground multiplets of Eu3+ is explained on the basis of the shift from the hypersensitive electric-dipole to magnetic-dipole related transitions with the variation in site symmetry with increasing concentration of Eu3+. White emission of Sr2-x SmxCeO4+x/2 at xless than or equal to0.02 is due the co-existence of Ce4+-O2- CT emission and (4)G(4)(5/2)-H-6(J) Sm3+ transitions whereas only the Sm3+ red emission prevails for xgreater than or equal to0.03. The above unique changes in PL emission features are explained in terms of the changes in NNN environments of Ce4+. Quenching of Ce4+-O2- CT emission by other Ln(3+) is due to the ground state crossover arising out of the NNN interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated Li+/H+ exchange in the lithium ion conductors (LISICONS) [ Li2+2xZn1-xGeO4; x = 0.5 ( I) and x = 0.75 (II)] and their parent, gamma-Li2ZnGeO4. Facile exchange of approximately 2x lithium ions per formula unit occurs with both the LISICONS in dilute acetic acid, while the parent material does not exhibit an obvious Li+/H+ exchange under the same conditions. The results can be understood in terms of lithium ion distribution in the crystal structures: the parent Li2ZnGeO4, where all the lithium ions form part of the tetrahedral framework structure, does not exhibit a ready Li+/H+ exchange; LISICONS, where lithium ions are distributed between framework ( tetrahedral) and nonframework sites, undergo a facile Li+/H+ exchange of the nonframework site lithium ions. Accordingly, Li+/H+ exchange in dilute aqueous acetic acid provides a convenient probe to distinguish between the mobile and the immobile lithium ions in lithium ion conductors.